Home
Class 12
MATHS
Find the value of the root(5)(242) corr...

Find the value of the `root(5)(242)` correct to 4 decimal places

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt[5]{242} \) correct to four decimal places, we can follow these steps: ### Step 1: Rewrite the expression We can express \( \sqrt[5]{242} \) as \( 242^{1/5} \). ### Step 2: Factor 242 Next, we can factor 242 to make calculations easier. We know that: \[ 242 = 2 \times 121 = 2 \times 11^2 \] Thus, we can rewrite \( 242^{1/5} \) as: \[ 242^{1/5} = (2 \times 11^2)^{1/5} = 2^{1/5} \times 11^{2/5} \] ### Step 3: Calculate \( 2^{1/5} \) and \( 11^{2/5} \) We can find \( 2^{1/5} \) and \( 11^{2/5} \) using a calculator or by approximation. 1. **Calculating \( 2^{1/5} \)**: - Using a calculator, we find: \[ 2^{1/5} \approx 1.1487 \] 2. **Calculating \( 11^{2/5} \)**: - First, calculate \( 11^{1/5} \): \[ 11^{1/5} \approx 1.6197 \] - Then square this value: \[ 11^{2/5} \approx (1.6197)^2 \approx 2.6210 \] ### Step 4: Multiply the results Now we multiply \( 2^{1/5} \) and \( 11^{2/5} \): \[ 242^{1/5} \approx 1.1487 \times 2.6210 \] Calculating this gives: \[ 242^{1/5} \approx 3.0158 \] ### Step 5: Round to four decimal places Finally, we round the result to four decimal places: \[ \sqrt[5]{242} \approx 3.0158 \] ### Final Answer Thus, the value of \( \sqrt[5]{242} \) correct to four decimal places is: \[ \boxed{3.0158} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of root(5)(32.16) correct to 4 decimals places

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

Find the value of sqrt(5) correct to 2 decimal places, then use it to find the square root of (3-sqrt(5))/(3+sqrt(5)) correct to 2 significant digits.

Find the value of the sqrt199 correct to 4 decimal places

Find the value of (627)^(1//4) correct to 4 decimals places

Find an approximate value of the following corrected to 4 decimal places. root(3)(1002)-root(3)(998)

Find an approximate value of the following corrected to 4 decimal places. root(7)(127)

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (1)/(3+2sqrt(2))

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (2-sqrt(3))/(sqrt(3))

If sqrt(2)= 1.4 and sqrt(3) = 1.7 find the value of each of the correct to one decimal place: (1)/(sqrt(3)-sqrt(2))