Home
Class 12
MATHS
Find an approximate value of the followi...

Find an approximate value of the following corrected to 4 decimal places.
`root(7)(127)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sqrt[7]{127} \) corrected to four decimal places, we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting \( \sqrt[7]{127} \) in exponential form: \[ \sqrt[7]{127} = 127^{\frac{1}{7}}. \] Next, we can express 127 as \( 128 - 1 \): \[ 127^{\frac{1}{7}} = (128 - 1)^{\frac{1}{7}}. \] ### Step 2: Use the Binomial Expansion Using the Binomial theorem, we can expand \( (a - b)^n \) where \( a = 128 \), \( b = 1 \), and \( n = \frac{1}{7} \): \[ (128 - 1)^{\frac{1}{7}} = 128^{\frac{1}{7}} \left(1 - \frac{1}{128}\right)^{\frac{1}{7}}. \] ### Step 3: Calculate \( 128^{\frac{1}{7}} \) We know that \( 128 = 2^7 \), therefore: \[ 128^{\frac{1}{7}} = 2. \] ### Step 4: Expand \( \left(1 - \frac{1}{128}\right)^{\frac{1}{7}} \) Now we need to expand \( \left(1 - \frac{1}{128}\right)^{\frac{1}{7}} \) using the Binomial expansion: \[ \left(1 - x\right)^p \approx 1 - px + \frac{p(p-1)}{2!}x^2 \quad \text{for small } x. \] Here, \( p = \frac{1}{7} \) and \( x = \frac{1}{128} \): \[ \left(1 - \frac{1}{128}\right)^{\frac{1}{7}} \approx 1 - \frac{1}{7} \cdot \frac{1}{128} + \frac{\frac{1}{7} \left(\frac{1}{7} - 1\right)}{2} \left(\frac{1}{128}\right)^2. \] ### Step 5: Calculate the terms Calculating the first term: \[ 1 - \frac{1}{7 \cdot 128} = 1 - \frac{1}{896} \approx 1 - 0.00111607 \approx 0.99888393. \] Calculating the second term: \[ \frac{\frac{1}{7} \cdot \left(\frac{1}{7} - 1\right)}{2} \left(\frac{1}{128}\right)^2 = \frac{\frac{1}{7} \cdot -\frac{6}{7}}{2} \cdot \frac{1}{16384} = -\frac{6}{14 \cdot 16384} \approx -0.000026. \] So, we can ignore the second term for our approximation since it is very small. ### Step 6: Combine the results Now we can combine our results: \[ \left(1 - \frac{1}{128}\right)^{\frac{1}{7}} \approx 0.99888393. \] Thus, we have: \[ \sqrt[7]{127} \approx 2 \cdot 0.99888393 \approx 1.99776786. \] ### Step 7: Round to four decimal places Finally, rounding \( 1.99776786 \) to four decimal places gives: \[ \sqrt[7]{127} \approx 1.9978. \] ### Final Answer The approximate value of \( \sqrt[7]{127} \) corrected to four decimal places is: \[ \boxed{1.9978}. \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find an approximate value of the following corrected to 4 decimal places. root(3)(1002)-root(3)(998)

Find the value of the sqrt199 correct to 4 decimal places

Find the value of the root(5)(242) correct to 4 decimal places

Find the value of root(5)(32.16) correct to 4 decimals places

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

Find the square root of each of the following correct to two decimal places : (i) 3(4)/(5) (ii) 6(7)/(8)

Find the value of (627)^(1//4) correct to 4 decimals places

The approximate value of (7.995)^(1//3) correct to four decimal places , is

Find the cube root of 217, correct to two decimal places.

Find the cube root of 217, correct to two decimal places.