Home
Class 12
MATHS
Find the value of the (1)/(root(3)(999) ...

Find the value of the `(1)/(root(3)(999) )` correct to 4 decimal places

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{\sqrt[3]{999}} \) correct to four decimal places, we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \frac{1}{\sqrt[3]{999}} = \frac{1}{999^{1/3}} \] We can express \( 999 \) as \( 1000 - 1 \): \[ \frac{1}{\sqrt[3]{999}} = \frac{1}{(1000 - 1)^{1/3}} \] ### Step 2: Use the Binomial Expansion Using the binomial expansion for \( (1 - x)^{n} \), where \( n = -\frac{1}{3} \) and \( x = \frac{1}{1000} \): \[ (1 - x)^{-n} \approx 1 + nx + \frac{n(n+1)}{2!}x^2 + \ldots \] Substituting \( x = \frac{1}{1000} \): \[ (1 - \frac{1}{1000})^{-1/3} \approx 1 + \left(-\frac{1}{3}\right) \cdot \frac{1}{1000} + \frac{\left(-\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2} \cdot \left(\frac{1}{1000}\right)^2 \] ### Step 3: Calculate the First Two Terms Calculating the first two terms: 1. The first term is \( 1 \). 2. The second term is: \[ -\frac{1}{3} \cdot \frac{1}{1000} = -\frac{1}{3000} \] ### Step 4: Calculate the Second Order Term Calculating the second order term: \[ \frac{\left(-\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2} \cdot \left(\frac{1}{1000}\right)^2 = \frac{\frac{2}{9}}{2} \cdot \frac{1}{1000000} = \frac{1}{9 \cdot 1000000} = \frac{1}{9000000} \] ### Step 5: Combine the Terms Now we combine the terms: \[ (1 - \frac{1}{1000})^{-1/3} \approx 1 - \frac{1}{3000} + \frac{1}{9000000} \] We can neglect the higher-order term \( \frac{1}{9000000} \) for our calculation up to four decimal places. ### Step 6: Approximate the Value Thus, we have: \[ \approx 1 - \frac{1}{3000} = 1 - 0.0003333 \approx 0.9996667 \] ### Step 7: Final Calculation Now, we need to find: \[ \frac{1}{10} \cdot (0.9996667) \approx 0.09996667 \] Rounding this to four decimal places gives: \[ \approx 0.1000 \] ### Final Answer Thus, the value of \( \frac{1}{\sqrt[3]{999}} \) correct to four decimal places is: \[ \boxed{0.1003} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the root(5)(242) correct to 4 decimal places

Find the value of root(5)(32.16) correct to 4 decimals places

Find an approximate value of the following corrected to 4 decimal places. root(3)(1002)-root(3)(998)

Find an approximate value of the following corrected to 4 decimal places. root(7)(127)

Find the value of the sqrt199 correct to 4 decimal places

Find the value of sqrt(5) correct to 2 decimal places, then use it to find the square root of (3-sqrt(5))/(3+sqrt(5)) correct to 2 significant digits.

Find the value of (1.02)^(3//2) - (0.98)^(3//2) correct to 6 decimals .

Using binomial theorem, the value of (0.999)^3 correct to 3 decimal places is

If sqrt(2)=1*4 and sqrt(3)=1*7 , find the value of 1/(sqrt(3)-sqrt(2)) , correct to one place of decimal.

The approximate value of (7.995)^(1//3) correct to four decimal places , is