Home
Class 12
MATHS
Find an approximate value of the followi...

Find an approximate value of the following corrected to 4 decimal places.
`root(3)(1002)-root(3)(998)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sqrt[3]{1002} - \sqrt[3]{998} \) corrected to four decimal places, we can use the binomial theorem for small values. Here’s how we can solve it step by step: ### Step 1: Rewrite the expression We can express the cube roots in terms of a common base: \[ \sqrt[3]{1002} - \sqrt[3]{998} = \sqrt[3]{1000 + 2} - \sqrt[3]{1000 - 2} \] ### Step 2: Factor out the common term We can factor out \( \sqrt[3]{1000} \) (which is \( 10 \)): \[ = \sqrt[3]{1000} \left( \sqrt[3]{1 + \frac{2}{1000}} - \sqrt[3]{1 - \frac{2}{1000}} \right) \] \[ = 10 \left( \sqrt[3]{1 + 0.002} - \sqrt[3]{1 - 0.002} \right) \] ### Step 3: Use the binomial expansion Using the binomial expansion for small \( x \): \[ (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2 \] For \( n = \frac{1}{3} \) and \( x = 0.002 \): \[ \sqrt[3]{1 + 0.002} \approx 1 + \frac{1}{3}(0.002) + \frac{1/3 \cdot (1/3 - 1)}{2}(0.002)^2 \] \[ \sqrt[3]{1 - 0.002} \approx 1 - \frac{1}{3}(0.002) + \frac{1/3 \cdot (1/3 - 1)}{2}(0.002)^2 \] ### Step 4: Calculate the expansions Calculating the first few terms: 1. For \( \sqrt[3]{1 + 0.002} \): \[ \approx 1 + \frac{1}{3}(0.002) + \frac{1/3 \cdot (-2/3)}{2}(0.002)^2 \] \[ = 1 + 0.0006667 - 0.0000006667 \approx 1 + 0.0006667 \] 2. For \( \sqrt[3]{1 - 0.002} \): \[ \approx 1 - \frac{1}{3}(0.002) + \frac{1/3 \cdot (-2/3)}{2}(0.002)^2 \] \[ = 1 - 0.0006667 - 0.0000006667 \approx 1 - 0.0006667 \] ### Step 5: Subtract the two expansions Now we can subtract the two expansions: \[ \sqrt[3]{1 + 0.002} - \sqrt[3]{1 - 0.002} \approx (1 + 0.0006667) - (1 - 0.0006667) = 0.0006667 + 0.0006667 = 0.0013334 \] ### Step 6: Multiply by 10 Now, we multiply by 10: \[ 10 \times 0.0013334 = 0.013334 \] ### Step 7: Round to four decimal places Finally, rounding \( 0.013334 \) to four decimal places gives: \[ \approx 0.0133 \] ### Final Answer Thus, the approximate value of \( \sqrt[3]{1002} - \sqrt[3]{998} \) corrected to four decimal places is: \[ \boxed{0.0133} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find an approximate value of the following corrected to 4 decimal places. root(7)(127)

Find the value of the sqrt199 correct to 4 decimal places

Find the value of the root(5)(242) correct to 4 decimal places

Find the value of the (1)/(root(3)(999) ) correct to 4 decimal places

Find the value of root(5)(32.16) correct to 4 decimals places

Find the value of (627)^(1//4) correct to 4 decimals places

The approximate value of (7.995)^(1//3) correct to four decimal places , is

Find the cube root of 217, correct to two decimal places.

Find the cube root of 217, correct to two decimal places.

Find the square root of 11 correct to five decimal places.