Home
Class 12
MATHS
If, |x|<1,Find the coefficient of x^n in...

If, |x|<1,Find the coefficient of` x^n` in the expansion of `(1+ 2x + 3x^2 + 4x^3 + …..)^(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \( (1 + 2x + 3x^2 + 4x^3 + \ldots)^{1/2} \), we can follow these steps: ### Step 1: Recognize the series The series \( 1 + 2x + 3x^2 + 4x^3 + \ldots \) can be expressed as: \[ \sum_{k=0}^{\infty} (k+1)x^k \] This is a power series where the coefficient of \( x^k \) is \( k+1 \). ### Step 2: Identify the closed form of the series The series can be simplified using the formula for the sum of a geometric series. We know that: \[ \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad \text{for } |x| < 1 \] Differentiating this series with respect to \( x \) gives: \[ \sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2} \] Multiplying both sides by \( x \): \[ \sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2} \] Now, adding \( \sum_{k=0}^{\infty} x^k \) to this series: \[ \sum_{k=0}^{\infty} (k+1)x^k = \sum_{k=0}^{\infty} x^k + \sum_{k=1}^{\infty} kx^k = \frac{1}{1-x} + \frac{x}{(1-x)^2} \] Combining these gives: \[ \sum_{k=0}^{\infty} (k+1)x^k = \frac{1}{1-x} + \frac{x}{(1-x)^2} = \frac{1}{(1-x)^2} \] ### Step 3: Substitute into the original expression Now, we can rewrite the original expression: \[ (1 + 2x + 3x^2 + 4x^3 + \ldots)^{1/2} = \left(\frac{1}{(1-x)^2}\right)^{1/2} = \frac{1}{1-x} \] ### Step 4: Expand the expression The expression \( \frac{1}{1-x} \) can be expanded using the binomial series: \[ \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \text{for } |x| < 1 \] ### Step 5: Identify the coefficient of \( x^n \) From the expansion \( \sum_{n=0}^{\infty} x^n \), we see that the coefficient of \( x^n \) is \( 1 \). ### Final Answer Thus, the coefficient of \( x^n \) in the expansion of \( (1 + 2x + 3x^2 + 4x^3 + \ldots)^{1/2} \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, solve for x:|[a+x, a-x, a-x],[ a-x, a+x, a-x],[ a-x, a-x, a+x]|=0

If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " f(3x) - f(x) =

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

If x is a negative integer, then (a) x+|x|=0 (b) x-|x|=0 (c) x+|x|=-2x (d) x=-|x|

If x is a negative integer, then (a) x+|x|=0 (b) x-|x|=0 x+|x|=-2x (d) x=-|x|

If x is a positive integer, then (a) x+|x|=0 (b) x-|x|=0 (c) x+|x|=-2x (d) x=-1|x|

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If {x} and [x] represent fractional and integral part of x respectively then solve the equation x-1=(x-[x])(x-{x})

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is