Home
Class 12
MATHS
If y= x^(1/3).x^(1/9).x^(1/27)...oo then...

If `y= x^(1/3).x^(1/9).x^(1/27)...oo` then y=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = x^{1/3} \cdot x^{1/9} \cdot x^{1/27} \cdots \) up to infinity, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression for \( y \): \[ y = x^{1/3} \cdot x^{1/9} \cdot x^{1/27} \cdots \] We can express this as: \[ y = x^{\left( \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots \right)} \] ### Step 2: Identify the series The series in the exponent is: \[ S = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots \] This is a geometric series where the first term \( a = \frac{1}{3} \) and the common ratio \( r = \frac{1}{3} \). ### Step 3: Sum the geometric series The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values of \( a \) and \( r \): \[ S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] ### Step 4: Substitute back into the expression for \( y \) Now we can substitute \( S \) back into the expression for \( y \): \[ y = x^{\frac{1}{2}} \] ### Final Answer Thus, the final result is: \[ y = \sqrt{x} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=9^(1/3) 9^(1/9) 9^(1/27) ......ad inf y= 4^(1/3) 4^(-1/9) 4^(1/27) ...... ad inf and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

If x=9^(1/3) 9^(1/9) 9^(1/27) ...-> ∞ , y= 4^(1/3) 4^(-1/9) 4^(1/27) ....-> ∞ and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

y =x^2+(1)/(x^2 +(1)/(x^2+.....oo)) then prove that xdy/dx =(2xy^2)/(1+y^2).

"If "y=x+x^(2)+x^(3)+...oo and |x|lt1, "then prove that "x=(y)/(1+y).

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If yx^(2)/(3) ="constant" when x=x_(1) , then y=300, then find the y when x=(8x_(1))/(27)

If (2)/(3)=(x-(1)/(y))+(x^(2)-(1)/(y^(2)))+ ... "To" oo and xy =2 then calculate the values of x and y with the condition that x lt 1 .

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)])