Home
Class 12
MATHS
C0 + 2.C1 + 4.C2 + …….+Cn.2^n = 243 , th...

`C_0 + 2.C_1 + 4.C_2 + …….+C_n.2^n = 243` , then n =

A

5

B

10

C

15

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( C_0 + 2C_1 + 4C_2 + \ldots + C_n \cdot 2^n = 243 \), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Series**: The given series can be expressed in terms of binomial coefficients. Specifically, we can write: \[ C_0 + 2C_1 + 4C_2 + \ldots + C_n \cdot 2^n = \sum_{k=0}^{n} C_k \cdot 2^k \] where \( C_k = \binom{n}{k} \). 2. **Applying the Binomial Theorem**: According to the Binomial Theorem, we know that: \[ (1 + x)^n = \sum_{k=0}^{n} C_k \cdot x^k \] If we let \( x = 2 \), we have: \[ (1 + 2)^n = \sum_{k=0}^{n} C_k \cdot 2^k \] Thus, we can rewrite our series as: \[ 3^n = \sum_{k=0}^{n} C_k \cdot 2^k \] 3. **Setting the Equation**: From the problem statement, we have: \[ 3^n = 243 \] 4. **Finding the Value of \( n \)**: We know that \( 243 \) can be expressed as a power of \( 3 \): \[ 243 = 3^5 \] Therefore, we can equate the exponents: \[ n = 5 \] 5. **Conclusion**: The value of \( n \) is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

With usual notations prove that 2.C_0 + 7.C_1 + 12.C_2 + ……..+(5n + 2).C_n = (5n + 4).2^(n-1)

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .