Home
Class 12
MATHS
1/2. ""^nC0 + ""^nC1 + 2. ""^nC2 + 2^2. ...

`1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n = `

A

`(3^(-n))/(2)`

B

`(4^(2n))/(2)`

C

`(4^n)/(2)`

D

`(3^n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ \frac{1}{2} \binom{n}{0} + \binom{n}{1} + 2 \cdot \binom{n}{2} + 2^2 \cdot \binom{n}{3} + \ldots + 2^{n-1} \cdot \binom{n}{n} \] we can follow these steps: ### Step 1: Factor out \(\frac{1}{2}\) We start by factoring out \(\frac{1}{2}\) from the entire series: \[ \frac{1}{2} \left( \binom{n}{0} + \binom{n}{1} \cdot 2 + \binom{n}{2} \cdot 2^2 + \ldots + \binom{n}{n} \cdot 2^{n-1} \right) \] ### Step 2: Rewrite the series The series inside the parentheses can be rewritten as: \[ \binom{n}{0} \cdot 2^0 + \binom{n}{1} \cdot 2^1 + \binom{n}{2} \cdot 2^2 + \ldots + \binom{n}{n} \cdot 2^{n} \] This is the expansion of \((1 + 2)^n\) using the Binomial Theorem, which states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \] ### Step 3: Apply the Binomial Theorem In our case, let \(x = 2\) and \(y = 1\): \[ (1 + 2)^n = 3^n \] Thus, we have: \[ \binom{n}{0} \cdot 2^0 + \binom{n}{1} \cdot 2^1 + \binom{n}{2} \cdot 2^2 + \ldots + \binom{n}{n} \cdot 2^{n} = 3^n \] ### Step 4: Substitute back into the equation Now, substituting back into our equation gives: \[ \frac{1}{2} \cdot 3^n \] ### Step 5: Final result Thus, the final result of the series is: \[ \frac{3^n}{2} \] ### Conclusion The answer to the given series is: \[ \frac{3^n}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

If .^nC_30=^nC_4 , find n

If .^nC_12=^nC_8 , find .^nC_17 and ^22C_n

If .^nC_10= ^nC_12 , determine n and hence .^nC_5

sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n) =

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a_r is a. (.^nC_2)^2 b. .^n C_r .^n C_(r+1) c. .^(2n) C_r d. .^(2n) C_(r+1)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question: If n is a positive integer then 1/((49)^n) - 8/((49)^n)(^(2n)C_1)+8^2/((49)^n)( ^(2n)C_2)- 8^3/((49)^n)(^(2n)c_3)+......+8^(2n)/((49)^n)= (A) -1 (B) 1 (C) (64/49)^n (D) none of these

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

Which of the following statement is true Statement - I Coefficient of x^3 in e^(5x) is (5^2)/(3!) Statement - II sum_(n=1)^(oo)(""^(n)C_0+""^nC_1+""^(n)C_2+.......+""^nC_n)/(""^(n)P_n)=e^2-1