Home
Class 12
MATHS
""^((2n + 1))C0 + ""^((2n+ 1))C1 + ""^((...

`""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n = `

A

`2^n`

B

`2^(-n)`

C

`2^(2n)`

D

`3^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \binom{2n + 1}{0} + \binom{2n + 1}{1} + \binom{2n + 1}{2} + \ldots + \binom{2n + 1}{n} \), we can use the Binomial Theorem and some properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (1 + x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^k \] For our case, we will consider \( n = 2n + 1 \). 2. **Setting Up the Equation**: We can express the sum of the binomial coefficients as: \[ \sum_{k=0}^{2n+1} \binom{2n+1}{k} = (1 + 1)^{2n+1} = 2^{2n+1} \] This represents the sum of all coefficients from \( k = 0 \) to \( k = 2n + 1 \). 3. **Using Symmetry of Binomial Coefficients**: The binomial coefficients have a symmetry property: \[ \binom{n}{k} = \binom{n}{n-k} \] Therefore, we can pair the coefficients: \[ \binom{2n + 1}{0} + \binom{2n + 1}{1} + \ldots + \binom{2n + 1}{n} = \binom{2n + 1}{n} + \binom{2n + 1}{n+1} + \ldots + \binom{2n + 1}{2n + 1} \] 4. **Dividing the Total Sum**: Since the total sum of coefficients is \( 2^{2n + 1} \), and we know that the coefficients from \( k = 0 \) to \( k = n \) and from \( k = n + 1 \) to \( k = 2n + 1 \) are equal, we can conclude: \[ \sum_{k=0}^{n} \binom{2n + 1}{k} = \sum_{k=n+1}^{2n+1} \binom{2n + 1}{k} = \frac{1}{2} \cdot 2^{2n + 1} = 2^{2n} \] 5. **Final Result**: Therefore, we have: \[ \binom{2n + 1}{0} + \binom{2n + 1}{1} + \binom{2n + 1}{2} + \ldots + \binom{2n + 1}{n} = 2^{2n} \] ### Conclusion: The final answer is: \[ \boxed{2^{2n}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

""^((2n + 1))C_0 - ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 - ……+""^((2n + 1))C_(2n) =

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

Prove the identity (1)/(""^(2n+1)C_(r)) + (1)/(""^(2n+1)C_(r+1)) = (2n+ 2)/(2n +1)*(1)/(""^(2n)C_(r))

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

STATEMENT - 1 : If .^(2n+1)C_(1) + .^(2n+1)C_(2)+………+ .^(2n+1)C_(n)= 4095 , then n = 7 STATEMENT - 2 : .^(n)C_(r )= .^(n)C_(n-r) where n epsilon N, r epsilon W and n ge r

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is