Home
Class 12
MATHS
((1 + ""^nC1 + ""^nC2 + ""^nC3+…….+nCn)^...

`((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) = `

A

1

B

`-1`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{(1 + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \ldots + \binom{n}{n})^2}{(1 + \binom{2n}{1} + \binom{2n}{2} + \binom{2n}{3} + \ldots + \binom{2n}{2n})} \] **Step 1: Simplifying the Numerator** The numerator is \(1 + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n}\). We can use the Binomial Theorem, which states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] By substituting \(x = 1\), we get: \[ (1 + 1)^n = 2^n = \sum_{k=0}^{n} \binom{n}{k} \] Thus, we have: \[ 1 + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = 2^n \] Now, squaring this result for the numerator: \[ (1 + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n})^2 = (2^n)^2 = 2^{2n} \] **Step 2: Simplifying the Denominator** Now, we simplify the denominator, which is: \[ 1 + \binom{2n}{1} + \binom{2n}{2} + \ldots + \binom{2n}{2n} \] Using the Binomial Theorem again, we substitute \(x = 1\): \[ (1 + 1)^{2n} = 2^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} \] Thus, we have: \[ 1 + \binom{2n}{1} + \binom{2n}{2} + \ldots + \binom{2n}{2n} = 2^{2n} \] **Step 3: Putting it All Together** Now we can substitute the results back into the original expression: \[ \frac{(2^{2n})}{(2^{2n})} = 1 \] Thus, the final answer is: \[ \boxed{1} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

""^((2n + 1))C_0 - ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 - ……+""^((2n + 1))C_(2n) =

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

STATEMENT - 1 : If n is even, .^(2n)C_(1)+.^(2n)C_(3)+.^(2n)C_(5)+"….."+.^(2n)C_(n-1) = 2^(2n-2) . STATEMENT - 2 : .^(2n)C_(1) + .^(2n)C_(3)+ .^(2n)C_(5) + "……"+ .^(2n)C_(2n-1) = 2^(2n-1)

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n) =

If .^nC_12=^nC_8 , find .^nC_17 and ^22C_n

If ^n C_9=^n C_8, find ^nC_17