`""^21C_0 + ""^21C_1 + ""^21C_2 + ……..+ ""^21C_10 = `
`""^21C_0 + ""^21C_1 + ""^21C_2 + ……..+ ""^21C_10 = `
A
`2^10`
B
`2^20`
C
`2^21`
D
`2^19`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem \( \binom{21}{0} + \binom{21}{1} + \binom{21}{2} + \ldots + \binom{21}{10} \), we will use the Binomial Theorem and properties of binomial coefficients.
### Step-by-Step Solution:
1. **Understanding the Binomial Expansion**:
The Binomial Theorem states that:
\[
(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k
\]
For our case, we will set \( n = 21 \).
2. **Writing the Expansion**:
We can write the expansion for \( (1 + x)^{21} \):
\[
(1 + x)^{21} = \binom{21}{0} x^0 + \binom{21}{1} x^1 + \binom{21}{2} x^2 + \ldots + \binom{21}{21} x^{21}
\]
3. **Substituting \( x = 1 \)**:
Now, we substitute \( x = 1 \) into the expansion:
\[
(1 + 1)^{21} = 2^{21} = \binom{21}{0} + \binom{21}{1} + \binom{21}{2} + \ldots + \binom{21}{21}
\]
This gives us the sum of all the binomial coefficients from \( \binom{21}{0} \) to \( \binom{21}{21} \).
4. **Grouping the Coefficients**:
Notice that the binomial coefficients have a symmetry:
\[
\binom{21}{k} = \binom{21}{21-k}
\]
This means:
\[
\binom{21}{0} = \binom{21}{21}, \quad \binom{21}{1} = \binom{21}{20}, \quad \ldots, \quad \binom{21}{10} = \binom{21}{11}
\]
5. **Finding the Required Sum**:
Since the coefficients from \( \binom{21}{0} \) to \( \binom{21}{10} \) are equal to the coefficients from \( \binom{21}{11} \) to \( \binom{21}{21} \), we can say:
\[
\binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10} = \binom{21}{11} + \binom{21}{12} + \ldots + \binom{21}{21}
\]
Therefore, we can write:
\[
\binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10} + \binom{21}{11} + \ldots + \binom{21}{21} = 2^{21}
\]
This implies:
\[
2 \left( \binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10} \right) = 2^{21}
\]
6. **Dividing by 2**:
To find the sum we want, we divide both sides by 2:
\[
\binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10} = \frac{2^{21}}{2} = 2^{20}
\]
### Final Answer:
\[
\binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10} = 2^{20}
\]
Similar Questions
Explore conceptually related problems
The coefficient x^5 in the expansion of (1+x)^(21)+(1+x)^(22)++(1+x)^(30) is a. "^51 C_5 b. "^9C_5 c. "^31 C_6 -"^(21)C_6 d. "^30 C_5 + "^(20)C_5
The coefficient x^5 in the expansion of (1+x)^(21)+(1+x)^(22)++(1+x)^(30) is a. "^51 C_5 b. "^9C_5 c. "^31 C_6 -"^(21)C_6 d. "^30 C_5 + "^(20)C_5
The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is
In "^7C_7+^8C_7+^9C_7+^(10)C_7+.......+^(20)C_7= 1. "^21 C_8 2. "^21 C_(13) 3. Neither 1 nor 2. 4. Both 1 and 2
Evaluate sum_(0 le i le j le 10) ""^(21)C_(i) * ""^(21)C_(j) .
If maximum value of .^19 C_p is a, .^20 C_q is b, .^21 C_r is c , then relation between a, b, c is
Evaluate : ^25C_22-^24C_21
If Sigma_(i=1)^(20) ((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i-1)))^(3)=(k)/(21) , then k equals
In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 21 , then inradius =
Statement 1: Number of ways of selecting 10 objects from 42 objects of which 21 objects are identical and remaining objects are distinct is 2^(20)dot Statement 2: ^42 C_0+^(42)C_1+^(42)C_2++^(42)C_(21)=2^(41)dot