Home
Class 12
MATHS
C0^2 -C1^2 + C2^2 - ………-C15^2 =...

`C_0^2 -C_1^2 + C_2^2 - ………-C_15^2` =

A

`""^49C_50`

B

`""^49C_25`

C

`""^50C_25`

D

`""^39C_40`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If C_0, C_1, C_2,………C_n are binomial coefficients int eh expansion of (1+x)^n then and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

""^11C_0^2 - ""^11C_1^2 + ""^11C_2^2 - ""^11C_3^2 + ……- "^11C_11^2 =

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

C_0 + 2.C_1 + 4.C_2 + …….+C_n.2^n = 243 , then n =

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n then find C_0 + C_3 + C_6 + …….

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0