Home
Class 12
MATHS
C0C2 + C1C3 +C2C4+……..+C(n-2) Cn =...

`C_0C_2 + C_1C_3 +C_2C_4+……..+C_(n-2) C_n = `

A

`""^(2n)C_(n-2)`

B

`""^(2n)C_n`

C

`""^(2n)C_(n-1)`

D

`""^(2n)C_(2n -2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_0C_2 + C_1C_3 + C_2C_4 + \ldots + C_{n-2}C_n \), we will use the properties of binomial coefficients and the binomial theorem. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to find the sum of products of binomial coefficients in the form \( C_k C_{n-k} \) for \( k = 0, 1, 2, \ldots, n-2 \). 2. **Using Binomial Theorem**: Recall the binomial expansion: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] This can be written as: \[ (1 + x)^n = \sum_{k=0}^{n} C_k x^k \] 3. **Constructing a Second Expansion**: We can also consider the expansion: \[ (1 + x^2)^n = C_0 + C_1 x^2 + C_2 x^4 + \ldots + C_n x^{2n} \] This gives us: \[ (1 + x^2)^n = \sum_{k=0}^{n} C_k x^{2k} \] 4. **Multiplying the Two Expansions**: Now, we multiply the two expansions: \[ (1 + x)^n (1 + x^2)^n \] This results in: \[ (1 + x)^{n} (1 + x^2)^{n} = (1 + x + x^2 + x^3 + \ldots)^n \] The product will yield terms that correspond to the coefficients \( C_k C_{n-k} \). 5. **Finding the Coefficient of \( x^n \)**: The left-hand side will give us a series of coefficients that include \( C_k C_{n-k} \). The coefficient of \( x^n \) in this product will be: \[ \sum_{k=0}^{n} C_k C_{n-k} \] 6. **Using the Hockey Stick Identity**: The sum \( C_k C_{n-k} \) can be simplified using the Hockey Stick identity, which states that: \[ C_k C_{n-k} = C_{n+1} \text{ (for appropriate values)} \] 7. **Final Result**: After simplifying, we find that: \[ C_0C_2 + C_1C_3 + C_2C_4 + \ldots + C_{n-2}C_n = 2nC_{n-2} \] ### Conclusion: Thus, the final answer is: \[ C_0C_2 + C_1C_3 + C_2C_4 + \ldots + C_{n-2}C_n = 2nC_{n-2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that C_0.C_3 + C_1.C_4 + C_2.C_5 + …..+C_(n-3).C_n = ""^(2n)C_(n +3)

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

if S_n = C_0C_1 + C_1C_2 +...+ C_(n-1)C_n and S_(n+1)/S_n = 15/4 then n is

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

C_0 + 2.C_1 + 4.C_2 + …….+C_n.2^n = 243 , then n =

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

" if" C_(0)C_(1)C_(2),……C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that: C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+……+C_(n-2)C_(n)=(|ul2n)/(|uln-2|uln+2)