Home
Class 12
MATHS
For |x| lt 1/2 , the value of the fourth...

For `|x| lt 1/2` , the value of the fourth term of `(1 - 2x)^(-3//4)` is

A

`-77/16 x^3`

B

`16/77 x^3`

C

`77/16 x^3`

D

`-16/77x^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fourth term of the expansion of \((1 - 2x)^{-3/4}\) for \(|x| < \frac{1}{2}\), we will use the Binomial Theorem for negative exponents. The Binomial Theorem states that: \[ (1 + u)^n = \sum_{k=0}^{\infty} \binom{n}{k} u^k \] where \(\binom{n}{k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!}\). ### Step-by-Step Solution: 1. **Identify the parameters**: We have \(n = -\frac{3}{4}\) and \(u = -2x\). 2. **Write the general term**: The general term \(T_k\) in the expansion is given by: \[ T_k = \binom{n}{k} u^k = \binom{-\frac{3}{4}}{k} (-2x)^k \] 3. **Calculate the fourth term**: The fourth term corresponds to \(k = 3\) (since we start counting from \(k = 0\)): \[ T_3 = \binom{-\frac{3}{4}}{3} (-2x)^3 \] 4. **Calculate the binomial coefficient**: \[ \binom{-\frac{3}{4}}{3} = \frac{-\frac{3}{4} \left(-\frac{3}{4}-1\right) \left(-\frac{3}{4}-2\right)}{3!} \] Simplifying this: \[ = \frac{-\frac{3}{4} \left(-\frac{7}{4}\right) \left(-\frac{11}{4}\right)}{6} \] \[ = \frac{3 \cdot 7 \cdot 11}{4 \cdot 4 \cdot 4 \cdot 6} \] \[ = \frac{231}{384} \] 5. **Calculate \((-2x)^3\)**: \[ (-2x)^3 = -8x^3 \] 6. **Combine the results**: \[ T_3 = \frac{231}{384} \cdot (-8x^3) = -\frac{231 \cdot 8}{384} x^3 \] \[ = -\frac{1848}{384} x^3 \] Simplifying \(-\frac{1848}{384}\): \[ = -\frac{231}{48} x^3 \] ### Final Answer: Thus, the fourth term of the expansion of \((1 - 2x)^{-3/4}\) is: \[ -\frac{231}{48} x^3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For |x| lt 1 , the constant term in the expansion of (1)/((x-1)^(2)(x-2) is :

The fourth term of the G.P. 4, - 2 , 1 , … is

Find the fourth term in the expansion of (1-2x)^(3//2)""dot

Write down the fourth term in the binomial expansion of (px + (1)/(x) )^(n) . If this term is independent of x , find the value of n. With this value of n , calculate the value of p given that the fourth term is equal to (5)/(2) .

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

The values of x for which (x-1)/(3x+4) lt (x-3)/(3x-2)

3x - 2 lt 2x + 1

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .

Without expanding, show that the value of each of the determinants is zero: |[(2^x+2^(-x))^2, (2^x-2^(-1))^2, 1] , [(3^x+3^(-1))^2, (3^x-3^(-x))^2, 1] , [(4^x+4^(-x))^2, (4^x-4^(-x))^2, 1]|

Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of b for which f(x) has greatest value at x=1 is