Home
Class 12
MATHS
1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) ...

` 1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =`

A

`(sqrt7)/(2)`

B

`(5sqrt2)/(7)`

C

`(5/7)^(1//2)`

D

`(5sqrt2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{1}{10^2} + \frac{1 \cdot 3}{1 \cdot 2} \cdot \frac{1}{10^4} + \frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \cdot \frac{1}{10^6} + \ldots \), we can identify a pattern in the terms. ### Step 1: Identify the general term The series can be expressed in terms of a general term. The \( n \)-th term can be written as: \[ T_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{1 \cdot 2 \cdots n} \cdot \frac{1}{10^{2n}} \] This can also be expressed using the double factorial notation: \[ T_n = \frac{(2n-1)!!}{n!} \cdot \frac{1}{10^{2n}} \] ### Step 2: Recognize the series as a known form The series resembles the Taylor series expansion for \( (1-x)^{-1/2} \): \[ (1-x)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \frac{x^n}{4^n} \] In our case, we can relate this to our series by substituting \( x = \frac{1}{100} \) (since \( 10^2 = 100 \)). ### Step 3: Apply the substitution The series can be rewritten as: \[ S = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \left(\frac{1}{100}\right)^n \] This matches the form of the series for \( (1-x)^{-1/2} \). ### Step 4: Evaluate the series Using the formula: \[ (1-x)^{-1/2} = (1 - \frac{1}{100})^{-1/2} = (0.99)^{-1/2} \] Calculating this gives: \[ (0.99)^{-1/2} = \frac{1}{\sqrt{0.99}} = \frac{1}{\sqrt{\frac{99}{100}}} = \frac{10}{\sqrt{99}} = \frac{10}{\sqrt{9.9}} \approx \frac{10}{3.15} \approx 3.175 \] ### Step 5: Final simplification To express this in a more manageable form, we can multiply by \( \sqrt{100} \): \[ S = \frac{10}{\sqrt{99}} \approx \frac{10}{9.95} \approx 1.005 \] ### Conclusion Thus, the value of the infinite series is: \[ S = \frac{5\sqrt{2}}{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?