Home
Class 12
MATHS
Let n in N . If (1 + x)^n = a0 + a1 x + ...

Let `n in N` . If `(1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n` and `a_(n-3), a_(n-2) , a_(n-1) `are in A.P then
Statement - I ` : a_1, a_2, a_3` are in A.P.
Statement -II : n = 7
The true statements are :

A

only I

B

only II

C

both I, II

D

neither I nor II

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

If (1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n The sum of the series a_(0) +a_(4) +a_(8)+a_(12)+ …… is

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot