Home
Class 12
MATHS
Coefficient of x^5 in ( 1+ x)^21 + (1 + ...

Coefficient of `x^5` in `( 1+ x)^21 + (1 + x)^22 + …….+ (1 + x)^30` is

A

`""^51C_5`

B

`""^9C_5`

C

`""^31C_6 - ""^21C_6`

D

`""^30C_5 + ""^20C_5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^5 \) in the expression \( (1+x)^{21} + (1+x)^{22} + \ldots + (1+x)^{30} \), we can follow these steps: ### Step 1: Define the expression Let \[ S = (1+x)^{21} + (1+x)^{22} + (1+x)^{23} + (1+x)^{24} + (1+x)^{25} + (1+x)^{26} + (1+x)^{27} + (1+x)^{28} + (1+x)^{29} + (1+x)^{30} \] ### Step 2: Use the property of binomial coefficients The coefficient of \( x^r \) in \( (1+x)^n \) is given by \( \binom{n}{r} \). Therefore, the coefficient of \( x^5 \) in \( S \) can be expressed as: \[ \text{Coefficient of } x^5 \text{ in } S = \binom{21}{5} + \binom{22}{5} + \binom{23}{5} + \binom{24}{5} + \binom{25}{5} + \binom{26}{5} + \binom{27}{5} + \binom{28}{5} + \binom{29}{5} + \binom{30}{5} \] ### Step 3: Calculate the coefficients Now we will calculate each of these binomial coefficients: - \( \binom{21}{5} = \frac{21 \times 20 \times 19 \times 18 \times 17}{5 \times 4 \times 3 \times 2 \times 1} = 20349 \) - \( \binom{22}{5} = \frac{22 \times 21 \times 20 \times 19 \times 18}{5 \times 4 \times 3 \times 2 \times 1} = 26334 \) - \( \binom{23}{5} = \frac{23 \times 22 \times 21 \times 20 \times 19}{5 \times 4 \times 3 \times 2 \times 1} = 33649 \) - \( \binom{24}{5} = \frac{24 \times 23 \times 22 \times 21 \times 20}{5 \times 4 \times 3 \times 2 \times 1} = 42504 \) - \( \binom{25}{5} = \frac{25 \times 24 \times 23 \times 22 \times 21}{5 \times 4 \times 3 \times 2 \times 1} = 53130 \) - \( \binom{26}{5} = \frac{26 \times 25 \times 24 \times 23 \times 22}{5 \times 4 \times 3 \times 2 \times 1} = 65780 \) - \( \binom{27}{5} = \frac{27 \times 26 \times 25 \times 24 \times 23}{5 \times 4 \times 3 \times 2 \times 1} = 80730 \) - \( \binom{28}{5} = \frac{28 \times 27 \times 26 \times 25 \times 24}{5 \times 4 \times 3 \times 2 \times 1} = 98280 \) - \( \binom{29}{5} = \frac{29 \times 28 \times 27 \times 26 \times 25}{5 \times 4 \times 3 \times 2 \times 1} = 118755 \) - \( \binom{30}{5} = \frac{30 \times 29 \times 28 \times 27 \times 26}{5 \times 4 \times 3 \times 2 \times 1} = 142506 \) ### Step 4: Sum the coefficients Now we sum all these coefficients: \[ \text{Total} = 20349 + 26334 + 33649 + 42504 + 53130 + 65780 + 80730 + 98280 + 118755 + 142506 \] Calculating this gives: \[ \text{Total} = 20349 + 26334 + 33649 + 42504 + 53130 + 65780 + 80730 + 98280 + 118755 + 142506 = 1040067 \] ### Final Answer Thus, the coefficient of \( x^5 \) in \( S \) is \( 1040067 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Coefficient of x^5 in (1+x +x^2 +x^3)^10 is

Coefficient of x^7 in (1 + x)^10 + x(1 + x)^9 + x^2 (1 + x)^8+………..+x^10 is

Find the coefficient of x^5 in (3 - 4x)^(-1)

Find the coefficient of x^10 in the expansion of (1+2x)^21 + (1 + 2x)^22 +……+ (1+ 2x)^30

Show that the coefficient of x^49 in ( x + 1) (x + 3) ( x+ 5) ……(x + 99) is 2500

Find the coefficient of x^5 in the expansion of 1+(1+x)+ (1+x)^2 + … + (1+ x)^(10) .

The coefficient of x^4 in ((1+x)/(1-x))^2,|x|<1 , is

Coefficient of x^n in (1+x)/(1!) +((1+x)^2)/(2!) + ((1+x)^3)/(3!) + .......=

Find the coefficient of x^4 in (1 - 4x)^(-3//5)

The coefficient x^5 in the expansion of (1+x)^(21)+(1+x)^(22)++(1+x)^(30) is a. "^51 C_5 b. "^9C_5 c. "^31 C_6 -"^(21)C_6 d. "^30 C_5 + "^(20)C_5