Home
Class 12
MATHS
""^(n) C(r+1)+2""^(n)C(r) +""^(n)C(r-1)=...

`""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=`

A

`""^((n+1))C_(r + 1)`

B

`""^(n+2)C_r`

C

`""^(n+2)C_(r+1)`

D

`""^(n+1)C_r`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{n}{r+1} + 2 \binom{n}{r} + \binom{n}{r-1} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \binom{n}{r+1} + 2 \binom{n}{r} + \binom{n}{r-1} \] ### Step 2: Break down the terms Notice that \( 2 \binom{n}{r} \) can be expressed as: \[ \binom{n}{r} + \binom{n}{r} \] Thus, we can rewrite the expression as: \[ \binom{n}{r+1} + \binom{n}{r} + \binom{n}{r} + \binom{n}{r-1} \] ### Step 3: Group the terms Now, we can group the terms: \[ \binom{n}{r+1} + \binom{n}{r-1} + \binom{n}{r} + \binom{n}{r} \] ### Step 4: Apply the Hockey Stick Identity According to the Hockey Stick Identity in combinatorics, we have: \[ \binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r} \] and \[ \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \] ### Step 5: Combine the results Using the Hockey Stick Identity: \[ \binom{n}{r+1} + \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r+1} + \binom{n}{r} \] Now, we can apply the Hockey Stick Identity again: \[ \binom{n+1}{r+1} + \binom{n}{r} = \binom{n+2}{r+1} \] ### Final Result Thus, we conclude that: \[ \binom{n}{r+1} + 2 \binom{n}{r} + \binom{n}{r-1} = \binom{n+2}{r+1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C_(r+1)

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C _(r+1)

If ""^(n)C _4 denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2)C_(r+1)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If ""^(n)C _r denotes the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)