Home
Class 12
MATHS
If Ck is the coefficient of x^k in the e...

If `C_k` is the coefficient of `x^k` in the expansion of `(1 + x)^2005` and if a,d are real numbers then `sum_(k = 0)^(2005) (a + kd).C_k` =

A

`(2a + 2005d)2^2004`

B

`(2a + 2005d)2^2005`

C

`(2a + 2004d)2^2005`

D

`(2a + 2004d)2^2005`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{k=0}^{2005} (a + kd) C_k \] where \( C_k \) is the coefficient of \( x^k \) in the expansion of \( (1 + x)^{2005} \). ### Step 1: Identify the coefficients \( C_k \) The coefficients \( C_k \) in the expansion of \( (1 + x)^{2005} \) are given by the binomial coefficient: \[ C_k = \binom{2005}{k} \] ### Step 2: Rewrite the summation We can split the summation into two parts: \[ \sum_{k=0}^{2005} (a + kd) C_k = \sum_{k=0}^{2005} a C_k + \sum_{k=0}^{2005} kd C_k \] ### Step 3: Evaluate the first summation The first summation is: \[ \sum_{k=0}^{2005} a C_k = a \sum_{k=0}^{2005} C_k \] Using the binomial theorem, we know that: \[ \sum_{k=0}^{n} C_k = (1 + 1)^{n} = 2^{2005} \] Thus, \[ \sum_{k=0}^{2005} a C_k = a \cdot 2^{2005} \] ### Step 4: Evaluate the second summation For the second summation, we have: \[ \sum_{k=0}^{2005} kd C_k = d \sum_{k=0}^{2005} k C_k \] Using the identity \( k C_k = 2005 C_{k-1} \), we can rewrite the summation: \[ \sum_{k=0}^{2005} k C_k = 2005 \sum_{k=1}^{2005} C_{k-1} = 2005 \sum_{j=0}^{2004} C_j \] where we let \( j = k - 1 \). Again, using the binomial theorem: \[ \sum_{j=0}^{2004} C_j = (1 + 1)^{2004} = 2^{2004} \] Thus, \[ \sum_{k=0}^{2005} k C_k = 2005 \cdot 2^{2004} \] ### Step 5: Combine the results Now we can combine both parts: \[ \sum_{k=0}^{2005} (a + kd) C_k = a \cdot 2^{2005} + d \cdot 2005 \cdot 2^{2004} \] ### Final Result Factoring out \( 2^{2004} \): \[ = 2^{2004} \left( a \cdot 2 + 2005d \right) \] Thus, the final answer is: \[ \sum_{k=0}^{2005} (a + kd) C_k = 2^{2004} (2a + 2005d) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the coefficient of x in the expansion of (x^2 +k/x)^5 is 270, then k =

Coefficient of x^4 in the expansion (1 + x - x^2)^5 is k then |k| .

If a_k is the coefficient of x^k in the expansion of (1 +x+x^2)^n for k = 0,1,2,……….,2n then a_1 +2a_2 + 3a_3 + ………+2n.a_(2n) =

sum_(k=0)^(5)(-1)^(k)2k

If a_k is the coefficient of x^k in the expansion of (1+x+x^2)^n for k = 0, 1, 2, ......., 2n then a_1+2a_2+3a_3+...+2na_(2n)=

Find the sum sum_(k=0)^(10).^(20)C_k .

Coefficient of x^n in e^(e^x) is 1/(n!) k then k =

The coefficient of x^(50) in the expansion sum_(k=0)^(100)""^(100)C_(k)( x-2)^(100-k)3^(k) is also equal to :

If n is a positive integer then ^nC_r+^nC_(r+1)=^(n+1)^C_(r+1) Also coefficient of x^r in the expansion of (1+x)^n=^nC_r. In an identity in x, coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ^nC_n+^(n+1)C_n+^(n+2)C_n+.....+^(n+k)C_n= (A) ^(n+k+1)C_(n+2) (B) ^(n+k+1)C_(n+1) (C) ^(n+k+1)C_k (D) ^(n+k+1)C_(n-2)

If n is a positive integer then ^nC_r+^nC_(r+1)=^(n+1)^C_(r+1) Also coefficient of x^r in the expansion of (1+x)^n=^nC_r. answer the following question: If n is a positive integer then ^nC_n+^(n+1)C_n+^(n+2)C_n+.....+^(n+k)C_n= (A) ^(n+k+1)C_(n+2) (B) ^(n+k+1)C_(n+1) (C) ^(n+k+1)C_k (D) ^(n+k+1)C_(n-2)