Home
Class 12
MATHS
If S(n) = underset (r=0) overset( n) ...

If `S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r))` and `T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r))` then ` (t_(n))/(s_(n))` = ?

A

`1/4 n `

B

`1/3 n`

C

`1/2 n`

D

`n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions \( S_n \) and \( T_n \) and then find the ratio \( \frac{T_n}{S_n} \). ### Step 1: Evaluate \( S_n \) The expression for \( S_n \) is given by: \[ S_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \] Using the property of binomial coefficients, we know that: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Thus, we can rewrite \( S_n \): \[ S_n = \sum_{r=0}^{n} \frac{r!(n-r)!}{n!} \] ### Step 2: Simplify \( S_n \) Now, we can simplify \( S_n \): \[ S_n = \frac{1}{n!} \sum_{r=0}^{n} r!(n-r)! \] Notice that \( r!(n-r)! \) counts the number of ways to arrange \( n \) items, which is equal to \( n! \). Therefore, we have: \[ S_n = \frac{1}{n!} \cdot n! = 1 \] ### Step 3: Evaluate \( T_n \) Now, we evaluate \( T_n \): \[ T_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} \] Using the property of binomial coefficients again, we can rewrite \( T_n \): \[ T_n = \sum_{r=1}^{n} \frac{r}{\frac{n!}{r!(n-r)!}} = \sum_{r=1}^{n} \frac{r! (n-r)!}{(n-1)!} \] ### Step 4: Simplify \( T_n \) We can simplify \( T_n \): \[ T_n = \frac{1}{(n-1)!} \sum_{r=1}^{n} r!(n-r)! \] Notice that \( r!(n-r)! \) can be rewritten as \( (n-1)! \) when we sum over all \( r \): \[ T_n = \frac{1}{(n-1)!} \cdot (n-1)! = n \] ### Step 5: Find \( \frac{T_n}{S_n} \) Now we can find the ratio: \[ \frac{T_n}{S_n} = \frac{n}{1} = n \] ### Final Answer Thus, the final answer is: \[ \frac{T_n}{S_n} = n \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to