Home
Class 12
MATHS
Find the value of C0 - [C1 -2.C2+ 3.C3-…...

Find the value of `C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n]`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ C_0 - [C_1 - 2C_2 + 3C_3 - \ldots + (-1)^{n-1} n C_n] \] where \( C_k \) denotes the binomial coefficient \( \binom{n}{k} \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficients \( C_k \) are given by: \[ C_k = \binom{n}{k} \] for \( k = 0, 1, 2, \ldots, n \). 2. **Recall the Binomial Theorem**: The binomial theorem states that: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] 3. **Differentiate the Binomial Expansion**: To find the series \( C_1 - 2C_2 + 3C_3 - \ldots + (-1)^{n-1} n C_n \), we differentiate both sides of the binomial expansion with respect to \( x \): \[ \frac{d}{dx}[(1 + x)^n] = n(1 + x)^{n-1} \] On the right side, differentiating gives: \[ C_1 + 2C_2 x + 3C_3 x^2 + \ldots + nC_n x^{n-1} \] 4. **Substituting \( x = -1 \)**: Now, substituting \( x = -1 \) into the differentiated equation: \[ n(1 - 1)^{n-1} = 0 \] This implies: \[ C_1 - 2C_2 + 3C_3 - \ldots + (-1)^{n-1} n C_n = 0 \] 5. **Substituting into the Original Expression**: Now, substituting this result back into our original expression: \[ C_0 - [C_1 - 2C_2 + 3C_3 - \ldots + (-1)^{n-1} n C_n] = C_0 - 0 = C_0 \] 6. **Finding \( C_0 \)**: The value of \( C_0 \) is \( \binom{n}{0} = 1 \). ### Final Answer: Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0

Find the sum 3^n C_0-8^n C_1+13^n C_2xx^n C_3+dot

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Find 1.C_0 + 3.C_1+ 3^2.C_2+….+3^n.C_n = ?

Find the sum C_0+3C_1+3^2C_2++3^n C_ndot

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n then the value of (C_0)^2+(C_1)^2/2+(C_2)^2/3+...+(C_n)^2/(n+1) is equal to

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is