Home
Class 12
MATHS
(1 +x)^15 = a0 + a1x +…..+a15 x^15 rArr ...

`(1 +x)^15 = a_0 + a_1x +…..+a_15 x^15 rArr sum_(r = 1)^15 r (a_r)/(a_(r - 1)) = `

A

110

B

115

C

120

D

135

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given by the binomial theorem: \[ (1 + x)^{15} = a_0 + a_1 x + a_2 x^2 + \ldots + a_{15} x^{15} \] where \( a_r = \binom{15}{r} \). We need to find the value of the following summation: \[ \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} \] ### Step 1: Express \( a_r \) and \( a_{r-1} \) From the binomial theorem, we know: \[ a_r = \binom{15}{r} \quad \text{and} \quad a_{r-1} = \binom{15}{r-1} \] ### Step 2: Substitute \( a_r \) and \( a_{r-1} \) into the summation Now we can write: \[ \frac{a_r}{a_{r-1}} = \frac{\binom{15}{r}}{\binom{15}{r-1}} \] Using the property of binomial coefficients, we have: \[ \frac{\binom{15}{r}}{\binom{15}{r-1}} = \frac{15! / (r!(15-r)!)}{(15! / ((r-1)!(15-r+1)!))} = \frac{(15-r+1)}{r} \] ### Step 3: Substitute back into the summation Thus, we can rewrite the summation as: \[ \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} = \sum_{r=1}^{15} r \cdot \frac{15 - r + 1}{r} \] This simplifies to: \[ \sum_{r=1}^{15} (15 - r + 1) = \sum_{r=1}^{15} (16 - r) \] ### Step 4: Calculate the summation Now we can compute: \[ \sum_{r=1}^{15} (16 - r) = \sum_{r=1}^{15} 16 - \sum_{r=1}^{15} r \] The first part is: \[ \sum_{r=1}^{15} 16 = 16 \times 15 = 240 \] And the second part is the sum of the first 15 natural numbers: \[ \sum_{r=1}^{15} r = \frac{15(15 + 1)}{2} = \frac{15 \times 16}{2} = 120 \] Thus, we have: \[ \sum_{r=1}^{15} (16 - r) = 240 - 120 = 120 \] ### Final Answer Therefore, the value of the summation is: \[ \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} = 120 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

(1 + x+x^2)^8 = a_0 + a_1x +…….+a_16 x^16 then a_1 - a_3 + a_5- a_7 + ……..-a_15=

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

The value of sum_(r = 1)^15 r^2 ((""^15C_r)/(""^15C_(r - 1)) ) of is equal to

The value of sum_(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If (1 +x + x^(2) + …+ x^(9))^(4) (x + x^(2) + x^(3) + … + x^(9)) = sum_(r=1)^(45) a_(r) x^(r) and the value of a_(2) + a_(6) + a_(10) + … + a_(42) " is " lambda the sum of all digits of lambda is .

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16 , then a_1 +a_3 + a_5 + ……+a_15 = ?

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =