Home
Class 12
MATHS
The value of sum(r = 1)^15 r^2 ((""^15Cr...

The value of `sum_(r = 1)^15 r^2 ((""^15C_r)/(""^15C_(r - 1)) )` of is equal to

A

1240

B

560

C

1085

D

680

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=1}^{15} r^2 \left( \frac{{^{15}C_r}}{{^{15}C_{r-1}}} \right) \] ### Step 1: Simplifying the Binomial Coefficient We start by simplifying the binomial coefficient: \[ \frac{{^{15}C_r}}{{^{15}C_{r-1}}} = \frac{{15!}}{{r!(15-r)!}} \cdot \frac{{(15-(r-1))!}}{{(r-1)!}} \] This can be rewritten as: \[ \frac{{^{15}C_r}}{{^{15}C_{r-1}}} = \frac{{15!}}{{r!(15-r)!}} \cdot \frac{{(16-r)!}}{{(r-1)!}} = \frac{{15! \cdot (16-r)!}}{{r! \cdot (15-r)! \cdot (r-1)!}} \] ### Step 2: Canceling Factorials By simplifying, we can cancel out the factorials: \[ = \frac{{16-r}}{{r}} \quad \text{(after simplification)} \] ### Step 3: Substitute Back into the Summation Now we substitute this back into our summation: \[ \sum_{r=1}^{15} r^2 \cdot \frac{{16-r}}{r} \] This simplifies to: \[ \sum_{r=1}^{15} r(16-r) \] ### Step 4: Splitting the Summation We can split this summation into two parts: \[ \sum_{r=1}^{15} (16r - r^2) = 16\sum_{r=1}^{15} r - \sum_{r=1}^{15} r^2 \] ### Step 5: Using Summation Formulas Now we apply the formulas for the summations: 1. The formula for the sum of the first n natural numbers is: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] 2. The formula for the sum of the squares of the first n natural numbers is: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] For \( n = 15 \): \[ \sum_{r=1}^{15} r = \frac{15 \cdot 16}{2} = 120 \] \[ \sum_{r=1}^{15} r^2 = \frac{15 \cdot 16 \cdot 31}{6} = 1240 \] ### Step 6: Substitute Values Back Now substituting these values back into our equation: \[ 16 \cdot 120 - 1240 = 1920 - 1240 = 680 \] ### Conclusion Thus, the value of the original summation is: \[ \boxed{680} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2^(16))/((17)!) (b) ((18)!2^(17))/((18)!) (c) ((16)!-2^(15))/((16)!) (d) ((15)!-2^(14))/((15)!)

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .