Home
Class 12
MATHS
Find the sum of the following (""^(15)...

Find the sum of the following
`(""^(15)C_(1))/(""^(15)C_(0))+2(""^(15)C_(2))/(""^(15)C_(1))+3(""^(15)C_(3))/(""^(15)C_(2))+......+15(""^(15)C_(15))/(""^(15)C_(14))`

A

`2^15`

B

240

C

120

D

136

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the following expression: \[ \frac{1 \cdot {^{15}C_{1}}}{^{15}C_{0}} + 2 \cdot \frac{^{15}C_{2}}{^{15}C_{1}} + 3 \cdot \frac{^{15}C_{3}}{^{15}C_{2}} + \ldots + 15 \cdot \frac{^{15}C_{15}}{^{15}C_{14}} \] ### Step 1: Understanding the terms in the sum The general term in the sum can be expressed as: \[ k \cdot \frac{^{15}C_k}{^{15}C_{k-1}} \quad \text{for } k = 1, 2, \ldots, 15 \] Using the property of binomial coefficients, we know that: \[ \frac{^{n}C_{k}}{^{n}C_{k-1}} = \frac{n-k+1}{k} \] ### Step 2: Simplifying each term For our case where \( n = 15 \): \[ \frac{^{15}C_k}{^{15}C_{k-1}} = \frac{15 - k + 1}{k} = \frac{16 - k}{k} \] Thus, the general term becomes: \[ k \cdot \frac{^{15}C_k}{^{15}C_{k-1}} = k \cdot \frac{16 - k}{k} = 16 - k \] ### Step 3: Writing the entire sum Now, we can rewrite the entire sum: \[ \sum_{k=1}^{15} (16 - k) \] ### Step 4: Evaluating the sum We can separate the sum: \[ \sum_{k=1}^{15} (16 - k) = \sum_{k=1}^{15} 16 - \sum_{k=1}^{15} k \] Calculating each part: 1. The first part: \[ \sum_{k=1}^{15} 16 = 16 \cdot 15 = 240 \] 2. The second part (using the formula for the sum of the first \( n \) natural numbers): \[ \sum_{k=1}^{15} k = \frac{15 \cdot (15 + 1)}{2} = \frac{15 \cdot 16}{2} = 120 \] ### Step 5: Final calculation Now substituting back into our sum: \[ \sum_{k=1}^{15} (16 - k) = 240 - 120 = 120 \] Thus, the final result is: \[ \boxed{120} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

""^(15)C_(9)-_""^(15)C_(6)+""^(15)C_(7)-^(15)C_(8) equals to

""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1) is equal to :

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

Evaluate : 1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)

""^(15)C_(8) + ""^(15)C_(9) - ""^(15)C_(6) - ""^(15)C_(7) is equal to ………. .

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

Evaluate the following: (i) .^(10)C_(5) (ii) .^(12)C_(8) (iii) .^(15)C_(12) (iv) .^(n+1)C_(n) (v) .^(14)C_(9)

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

Find the sum of the series .^15 C_0+^(15)C_1+^(15)C_2+...............+^(15)C_7 .

If ""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3) , then n is equal to :