Home
Class 12
MATHS
If a0, a1 , a2 …..an are binomial coeffi...

If `a_0, a_1 , a_2 …..a_n` are binomial coefficients then `(1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) = `

A

`((n -1)^n)/(n!)`

B

`((n + 1)^n)/(n!)`

C

`((n +1)^(2n))/(n!)`

D

`((n - 1)^n)/(2n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 + \frac{a_1}{a_0})(1 + \frac{a_2}{a_1}) \ldots (1 + \frac{a_n}{a_{n-1}}) \] where \( a_k \) are the binomial coefficients \( \binom{n}{k} \). ### Step-by-Step Solution: 1. **Identify the Binomial Coefficients**: The binomial coefficients are defined as: \[ a_k = \binom{n}{k} \] for \( k = 0, 1, 2, \ldots, n \). 2. **Rewrite the Expression**: Substitute the binomial coefficients into the expression: \[ (1 + \frac{\binom{n}{1}}{\binom{n}{0}})(1 + \frac{\binom{n}{2}}{\binom{n}{1}}) \ldots (1 + \frac{\binom{n}{n}}{\binom{n}{n-1}}) \] 3. **Simplify Each Term**: Each term can be simplified: \[ 1 + \frac{\binom{n}{k}}{\binom{n}{k-1}} = 1 + \frac{n!}{k!(n-k)!} \cdot \frac{(k-1)!(n-k+1)!}{n!} = 1 + \frac{n-k+1}{k} = \frac{n-k+1 + k}{k} = \frac{n+1-k}{k} \] 4. **Combine the Terms**: Now, we can write the entire product: \[ \prod_{k=1}^{n} \left(1 + \frac{a_k}{a_{k-1}}\right) = \prod_{k=1}^{n} \frac{n+1-k}{k} \] 5. **Recognize the Pattern**: The product can be rewritten as: \[ \frac{(n+1-1)(n+1-2)\ldots(n+1-n)}{1 \cdot 2 \cdot \ldots \cdot n} = \frac{n!}{n!} = 1 \] 6. **Final Result**: Thus, the final result of the expression is: \[ (1 + \frac{a_1}{a_0})(1 + \frac{a_2}{a_1}) \ldots (1 + \frac{a_n}{a_{n-1}}) = \frac{(n+1)!}{n!} = n + 1 \] ### Conclusion: The value of the expression is \( n + 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1, a_2, ,a_n are in H.P., then (a_1)/(a_2+a_3++a_n),(a_2)/(a_1+a_3++a_n), ,(a_n)/(a_1+a_2++a_(n-1)) are in a. A.P b. G.P. c. H.P. d. none of these

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If a_r is the coefficient of x^r in the expansion of (1+x)^n then a_1/a_0 + 2.a_2/a_1 + 3.a_3/a_2 + …..+n.(a_n)/(a_(n-1)) =

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to