Home
Class 12
MATHS
C0 + C1 + 2.C2(3) + 3.C3(3^2)+ 4.C4(3^3)...

`C_0 + C_1 + 2.C_2(3) + 3.C_3(3^2)+ 4.C_4(3^3) + ……+n.C_n 3^(n-1) = `

A

`n.4^(n-1) + 1`

B

`2n. 4^(n-1) + 1 `

C

`n.4^(n-1) - 1`

D

`n.4^(n+1) - 1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + c_(3) x^(3) + …+ C_(n) x^(n) , show that sum_(r=0)^(n) (C_(r) 3^(r+4))/((r+1)(r+2)(r+3)(r+4)) = (1)/((n+1)(n+2)(n+3)(n+4))(4^(n+4) -sum_(t=0)^(3) ""^(n+4)C_(t)) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

C_1 + 2. C_2 + 3. C_3 + …... + n. C_n=

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

Find C_0 + (C_1)/(2) + (C_2)/(2^2) + (C_3)/(2^3)+…..+(C_n)/(2^n)= ?