Home
Class 12
MATHS
(1 + x+x^2)^8 = a0 + a1x +…….+a16 x^16 t...

`(1 + x+x^2)^8 = a_0 + a_1x +…….+a_16 x^16` then `a_1 - a_3 + a_5- a_7 + ……..-a_15= `

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_1 - a_3 + a_5 - a_7 + \ldots - a_{15} \) from the expansion of \( (1 + x + x^2)^8 \). ### Step 1: Set up the equation We start with the expression: \[ (1 + x + x^2)^8 = a_0 + a_1 x + a_2 x^2 + \ldots + a_{16} x^{16} \] This means that the coefficients \( a_i \) represent the coefficients of \( x^i \) in the expansion. ### Step 2: Substitute \( x \) with \( -x \) Now, we will substitute \( x \) with \( -x \): \[ (1 - x + x^2)^8 = a_0 - a_1 x + a_2 x^2 - a_3 x^3 + \ldots + (-1)^{16} a_{16} x^{16} \] ### Step 3: Write the two equations From the original equation, we have: \[ (1 + x + x^2)^8 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{16} x^{16} \quad \text{(Equation 1)} \] From the substituted equation, we have: \[ (1 - x + x^2)^8 = a_0 - a_1 x + a_2 x^2 - a_3 x^3 + \ldots + a_{16} x^{16} \quad \text{(Equation 2)} \] ### Step 4: Subtract Equation 1 from Equation 2 Now, we subtract Equation 1 from Equation 2: \[ (1 - x + x^2)^8 - (1 + x + x^2)^8 = (-2a_1 x - 2a_3 x^3 - 2a_5 x^5 - \ldots - 2a_{15} x^{15}) \] This simplifies to: \[ \frac{(1 - x + x^2)^8 - (1 + x + x^2)^8}{-2x} = a_1 + a_3 x^2 + a_5 x^4 + \ldots + a_{15} x^{14} \] ### Step 5: Evaluate at \( x = i \) Next, we substitute \( x = i \) (where \( i = \sqrt{-1} \)): \[ (1 + i + i^2)^8 - (1 - i + i^2)^8 = 0 \] Since \( i^2 = -1 \), we have: \[ (1 + i - 1)^8 - (1 - i - 1)^8 = (i)^8 - (-i)^8 \] Calculating \( i^8 = 1 \) and \( (-i)^8 = 1 \): \[ 1 - 1 = 0 \] ### Step 6: Conclusion Thus, we find that: \[ a_1 - a_3 + a_5 - a_7 + \ldots - a_{15} = 0 \] ### Final Answer The value of \( a_1 - a_3 + a_5 - a_7 + \ldots - a_{15} \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16 , then a_1 +a_3 + a_5 + ……+a_15 = ?

If (1+x -2x^2)^8 =1 +a_1x + a_2x^2+……+a_16x^16, then a_2+a_4+a_6+……+a_16 = ?

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

(1 +x)^15 = a_0 + a_1x +…..+a_15 x^15 rArr sum_(r = 1)^15 r (a_r)/(a_(r - 1)) =

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :