Home
Class 12
MATHS
If (1+2x +3x^2)^10 = a0 +a1x +a2x^2 + ……...

If `(1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20` then `a_1` = ?

A

10.5

B

20

C

10

D

5.5

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient \( a_1 \) in the expansion of \( (1 + 2x + 3x^2)^{10} \), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (a + b + c)^n = \sum_{i+j+k=n} \frac{n!}{i!j!k!} a^i b^j c^k \] where \( a, b, c \) are terms in the expression, and \( i, j, k \) are non-negative integers that sum to \( n \). ### Step 1: Identify the terms In our case, we have: - \( a = 1 \) - \( b = 2x \) - \( c = 3x^2 \) - \( n = 10 \) ### Step 2: Find the coefficient of \( x \) To find \( a_1 \), we need the coefficient of \( x \) in the expansion. The only way to get \( x \) from the terms is by selecting \( 2x \) once and \( 1 \) the remaining times, since \( 3x^2 \) contributes \( x^2 \) which cannot contribute to \( x \). ### Step 3: Determine the number of ways to choose terms We can choose \( 2x \) once and \( 1 \) nine times. The number of ways to choose one \( 2x \) from the 10 terms is given by the binomial coefficient: \[ \binom{10}{1} = 10 \] ### Step 4: Calculate the contribution to \( a_1 \) The contribution to \( a_1 \) from choosing \( 2x \) once is: \[ \text{Coefficient of } x = 2 \times \binom{10}{1} = 2 \times 10 = 20 \] ### Conclusion Thus, the value of \( a_1 \) is: \[ \boxed{20} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+……..+a_20x^20 then (A) a_1=20 (B) a_2=210 (C) a_3=1500 (D) a_20=2^3.3^7

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16 , then a_1 +a_3 + a_5 + ……+a_15 = ?

If (1+2x+3x^2)^(10)=a_0+a_1x+a_2x^2++a_(20)x^(20),t h e na_1 equals 10 b. 20 c. 210 d. none of these

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)

lf (1 +x)^(10) = a_0 +a_1x + a_2x^2++a_(10)x^(10) , then value of (a_0-a_2+a_4-a_6+a_8-a_(10))^2+(a_1-a_3+a_5-a_7+a_9)^2 is

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then