Home
Class 12
MATHS
""^10C1 . ""^9C5 + ""^10C2. ""^9C4 + ""^...

`""^10C_1 . ""^9C_5 + ""^10C_2. ""^9C_4 + ""^10C_3. ""^9C_3 + ""^10C_4. ""^9C_2 + ""^10C_5. ""^9C_1 + ""^10C_6 = ""^19C_6 + x ` then x =

A

`-84`

B

84

C

81

D

`-81`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( x \) such that: \[ \binom{10}{1} \cdot \binom{9}{5} + \binom{10}{2} \cdot \binom{9}{4} + \binom{10}{3} \cdot \binom{9}{3} + \binom{10}{4} \cdot \binom{9}{2} + \binom{10}{5} \cdot \binom{9}{1} + \binom{10}{6} = \binom{19}{6} + x \] ### Step 1: Calculate each term in the left-hand side 1. **Calculate \( \binom{10}{1} \cdot \binom{9}{5} \)**: \[ \binom{10}{1} = 10, \quad \binom{9}{5} = \frac{9!}{5!4!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 126 \] \[ \Rightarrow \binom{10}{1} \cdot \binom{9}{5} = 10 \cdot 126 = 1260 \] 2. **Calculate \( \binom{10}{2} \cdot \binom{9}{4} \)**: \[ \binom{10}{2} = \frac{10 \times 9}{2 \times 1} = 45, \quad \binom{9}{4} = \frac{9!}{4!5!} = 126 \] \[ \Rightarrow \binom{10}{2} \cdot \binom{9}{4} = 45 \cdot 126 = 5670 \] 3. **Calculate \( \binom{10}{3} \cdot \binom{9}{3} \)**: \[ \binom{10}{3} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120, \quad \binom{9}{3} = 84 \] \[ \Rightarrow \binom{10}{3} \cdot \binom{9}{3} = 120 \cdot 84 = 10080 \] 4. **Calculate \( \binom{10}{4} \cdot \binom{9}{2} \)**: \[ \binom{10}{4} = 210, \quad \binom{9}{2} = 36 \] \[ \Rightarrow \binom{10}{4} \cdot \binom{9}{2} = 210 \cdot 36 = 7560 \] 5. **Calculate \( \binom{10}{5} \cdot \binom{9}{1} \)**: \[ \binom{10}{5} = 252, \quad \binom{9}{1} = 9 \] \[ \Rightarrow \binom{10}{5} \cdot \binom{9}{1} = 252 \cdot 9 = 2268 \] 6. **Calculate \( \binom{10}{6} \)**: \[ \binom{10}{6} = 210 \] ### Step 2: Sum all the calculated terms Now, we sum all the terms calculated above: \[ 1260 + 5670 + 10080 + 7560 + 2268 + 210 = 27148 \] ### Step 3: Calculate \( \binom{19}{6} \) Now we calculate \( \binom{19}{6} \): \[ \binom{19}{6} = \frac{19!}{6! \cdot 13!} = \frac{19 \times 18 \times 17 \times 16 \times 15 \times 14}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = 27132 \] ### Step 4: Set up the equation to find \( x \) Now we can set up the equation: \[ 27148 = 27132 + x \] ### Step 5: Solve for \( x \) Subtract \( 27132 \) from both sides: \[ x = 27148 - 27132 = 16 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find 1/2.""^10C_0 -""^10C_1 +2.""^10C_2 - 2^2.""^10C_3+…..+2^9. ""^10C_10 = ?

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

Observe the following statements : Statement - I : 1/2 . ""^10C_0 - ""^10C_1 + 2. ""^10C_2 - 2^2. ""^10C_3 + ……+ 2^9. ""^10C_10 = -1/2 Statement - II : ""^20C_1 - 2(""^20C_2) + 3.(""^20C_3)-…..-20.(""^20C_20) = 0 Then the false statements are :

Verify that ""^(9)C_(5)+""^(9)C_(4)=""^(10)C_(5)

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If ""^(100)C_(6)+4." "^(100)C_(7)+6." "^(100)C_(8)+4." "^(100)C_(9)+""^(100)C_(10) has the value equal to " "^(x)C_(y) , then the possible value (s) of x+y can be :

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the sum ^20C_10.^15C_0+^20C_9.^15C_1+^20C_8.^15C_2+....+^20C_0.^15C_10