Home
Class 12
MATHS
sum(r = 0)^(n-1) (Cr)/(Cr + C(r+1)) =...

`sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) = `

A

`n/2`

B

`n/3`

C

`n/4`

D

`(2n)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=0}^{n-1} \frac{C_r}{C_r + C_{r+1}} \), where \( C_r \) represents the binomial coefficient \( \binom{n-1}{r} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the given summation: \[ \sum_{r=0}^{n-1} \frac{C_r}{C_r + C_{r+1}} = \sum_{r=0}^{n-1} \frac{\binom{n-1}{r}}{\binom{n-1}{r} + \binom{n-1}{r+1}} \] ### Step 2: Simplify the denominator Using the property of binomial coefficients, we know that: \[ \binom{n-1}{r} + \binom{n-1}{r+1} = \binom{n}{r+1} \] Thus, we can rewrite the expression as: \[ \sum_{r=0}^{n-1} \frac{\binom{n-1}{r}}{\binom{n}{r+1}} \] ### Step 3: Rewrite the fraction Now, we can express the fraction: \[ \frac{\binom{n-1}{r}}{\binom{n}{r+1}} = \frac{\binom{n-1}{r}}{\frac{n}{r+1} \binom{n-1}{r}} = \frac{r+1}{n} \] This means we can rewrite our summation as: \[ \sum_{r=0}^{n-1} \frac{r+1}{n} \] ### Step 4: Factor out the constant Since \( \frac{1}{n} \) is a constant, we can factor it out of the summation: \[ \frac{1}{n} \sum_{r=0}^{n-1} (r+1) \] ### Step 5: Evaluate the summation The summation \( \sum_{r=0}^{n-1} (r+1) \) can be simplified: \[ \sum_{r=0}^{n-1} (r+1) = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \] ### Step 6: Combine the results Substituting this back into our expression, we have: \[ \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2} \] ### Final Result Thus, the final result of the summation is: \[ \sum_{r=0}^{n-1} \frac{C_r}{C_r + C_{r+1}} = \frac{n}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

If C_r stands for .^nC_r and sum_(r=1)^n (r.C_r)/(C_(r-1)) =210 then n= (A) 19 (B) 20 (C) 21 (D) none of these

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .