Home
Class 12
MATHS
1 + ""^2C1x + ""^3C2 x^2+ ""^4C3 x^3 + …...

`1 + ""^2C_1x + ""^3C_2 x^2+ ""^4C_3 x^3 + …..` to ` oo` terms can be summed up if

A

a) `x lt 1`

B

b) `x gt - 1`

C

c) `-1 lt x lt 1`

D

d) `-oo lt x lt oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the series given: \[ S = 1 + \binom{2}{1} x + \binom{3}{2} x^2 + \binom{4}{3} x^3 + \ldots \] ### Step 1: Rewrite the Binomial Coefficients We can express the binomial coefficients using the formula for combinations: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Applying this to our series, we have: \[ S = 1 + \frac{2!}{1!(2-1)!} x + \frac{3!}{2!(3-2)!} x^2 + \frac{4!}{3!(4-3)!} x^3 + \ldots \] ### Step 2: Simplify Each Term Now, let's simplify each term: - The first term is \( 1 \). - The second term is \( 2x \). - The third term is \( \frac{3 \cdot 2}{2} x^2 = 3x^2 \). - The fourth term is \( \frac{4 \cdot 3 \cdot 2}{6} x^3 = 4x^3 \). Thus, we can rewrite \( S \) as: \[ S = 1 + 2x + 3x^2 + 4x^3 + \ldots \] ### Step 3: Identify the Pattern Notice that the coefficients \( 1, 2, 3, 4, \ldots \) can be expressed as \( n \) where \( n \) is the index of the term. Therefore, we can express \( S \) in a more general form: \[ S = \sum_{n=0}^{\infty} (n+1)x^n \] ### Step 4: Use the Formula for the Sum of Series We can use the formula for the sum of an infinite series: \[ \sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2} \] Thus, we can derive: \[ \sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n = \frac{x}{(1-x)^2} + \frac{1}{1-x} \] ### Step 5: Combine the Results Now we combine the results: \[ S = \frac{x}{(1-x)^2} + \frac{1}{1-x} \] ### Step 6: Simplify the Expression To combine these fractions, we find a common denominator: \[ S = \frac{x + (1-x)(1-x)}{(1-x)^2} = \frac{x + (1 - 2x + x^2)}{(1-x)^2} = \frac{1 - x + x^2}{(1-x)^2} \] ### Step 7: Determine the Convergence The series converges if the absolute value of \( x \) is less than 1: \[ |x| < 1 \] ### Final Answer Thus, the series \( S = 1 + \binom{2}{1} x + \binom{3}{2} x^2 + \binom{4}{3} x^3 + \ldots \) can be summed up if: \[ |x| < 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

""^3C_0-""^4C_1*1/2 + ""^5C_2.(1/2)^2 - ""^6C_3.(1/2)^3+….. to oo terms :

If (1 + x - 2 x^(2))^(6) = 1 + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(12) x^(12) , then the value of C_(2) + C_(4) + C_(6) + …+ C_(12) is

The sum of the series ""^(4)C_(0) + ""^(5)C_(1) x + ""^(6)C_(2) x^(2)+""^(7)C_(3)x^(3) +... to infty , is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the series (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

the sum of the series ""^(2)C_(0) + ""^(3)C_(1) x^2 + ""^(4)C_(2) x^(4)+""^(5)C_(3)x^(6) +... to infty , is

If (1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n then find C_0 + C_3 + C_6 + …….

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + c_(3) x^(3) + …+ C_(n) x^(n) , show that sum_(r=0)^(n) (C_(r) 3^(r+4))/((r+1)(r+2)(r+3)(r+4)) = (1)/((n+1)(n+2)(n+3)(n+4))(4^(n+4) -sum_(t=0)^(3) ""^(n+4)C_(t)) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If x = 1 + 3a + 6a^2 + 10 a^3 + ……" to " oo terms |a| lt 1, y = 1+4a+10a^2 + 20a^3 + ….." to " oo terms, |a| lt 1 , then x:y