Home
Class 12
MATHS
If the expansion in powers of x be the f...

If the expansion in powers of x be the function `1//[(1-ax)(1-bx)]` is `a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+"…."`, then `a_(n)` is

A

`(a^n + b^n)'

B

`(a^(n+1) - b^(n+1))/(b-a)`

C

`(b^(n+1) - a^(n+1))/(b-a)`

D

`(b^n - a^n)/(b-a)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the expansion in power of x of the function (1)/(( 1 - ax)(1 - bx)) is a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …, then a_(n) is

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If log (1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+… then a_(3)+a_(6)+a_(9)+.. is equal to

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If a_(0), a_(1), a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

If a_(0), a_(1),a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that if E_(1) = a_(0) + a_(3) + a_(6) + …, E_(2) = a_(1) + a_(4) + a_(7) + … and E_(3) = a_(2) + a_(5) + a_(8) + ..." then " E_(1) = E_(2) = E_(3) = 3^(n-1)

If log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3) +…and n is not a mutiple of 3 then a_(n) is equal to

The expansion 1+x,1+x+x^(2),1+x+x^(2)+x^(3),….,1+x+x^(2)+…+x^(20) are multipled together and the terms of the product thus obtained are arranged in increasing powers of x in the form of a_(0)+a_(1)x+a_(2)x^(2)+… then, The value of (a_(r ))/(a_(n-r)) , where n is the degree of the product.