Home
Class 12
MATHS
If 'c' is small in comparison with l the...

If 'c' is small in comparison with l then `((l)/(l+c))^(1//2) + ((l)/(l-c))^(1//2)` =

A

`2 + (3c)/(4l)`

B

`2 + (3c^2)/(4l^2)`

C

`l + (3c^2)/(4l^2)`

D

`l + (3c)/(4l)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\left(\frac{l}{l+c}\right)^{1/2} + \left(\frac{l}{l-c}\right)^{1/2}\), we will use the binomial expansion for small values of \(c\) in comparison with \(l\). ### Step-by-Step Solution: 1. **Rewrite the Terms**: We start by rewriting the terms in a more manageable form: \[ \left(\frac{l}{l+c}\right)^{1/2} = \left(\frac{1}{1+\frac{c}{l}}\right)^{1/2} \] and \[ \left(\frac{l}{l-c}\right)^{1/2} = \left(\frac{1}{1-\frac{c}{l}}\right)^{1/2}. \] 2. **Apply Binomial Expansion**: For small \(x\), we can use the binomial expansion: \[ (1+x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2 + \ldots \] In our case, we have \(n = -\frac{1}{2}\) for both expansions: - For \(\left(1+\frac{c}{l}\right)^{-1/2}\): \[ \left(1+\frac{c}{l}\right)^{-1/2} \approx 1 - \frac{1}{2}\frac{c}{l} + \frac{3}{8}\left(\frac{c}{l}\right)^2 + \ldots \] - For \(\left(1-\frac{c}{l}\right)^{-1/2}\): \[ \left(1-\frac{c}{l}\right)^{-1/2} \approx 1 + \frac{1}{2}\frac{c}{l} + \frac{3}{8}\left(\frac{c}{l}\right)^2 + \ldots \] 3. **Combine the Expansions**: Now, we can add the two expansions: \[ \left(\frac{l}{l+c}\right)^{1/2} + \left(\frac{l}{l-c}\right)^{1/2} \approx \left(1 - \frac{1}{2}\frac{c}{l} + \frac{3}{8}\left(\frac{c}{l}\right)^2\right) + \left(1 + \frac{1}{2}\frac{c}{l} + \frac{3}{8}\left(\frac{c}{l}\right)^2\right). \] 4. **Simplify the Expression**: When we combine the two expansions, the terms involving \(\frac{c}{l}\) will cancel out: \[ 1 + 1 + \left(-\frac{1}{2}\frac{c}{l} + \frac{1}{2}\frac{c}{l}\right) + \left(\frac{3}{8}\left(\frac{c}{l}\right)^2 + \frac{3}{8}\left(\frac{c}{l}\right)^2\right) = 2 + \frac{3}{4}\left(\frac{c}{l}\right)^2. \] 5. **Final Result**: Thus, the final result of the expression is: \[ 2 + \frac{3}{4}\left(\frac{c}{l}\right)^2. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If L_1&L_2 are the lengths of the segments of any focal chord of the parabola y^2=x , then (a) 1/(L_1)+1/(L_2)=2 (b) 1/(L_1)+1/(L_2)=1/2 (c) 1/(L_1)+1/(L_2)=4 (d) 1/(L_1)+1/(L_2)=1/4

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to

If l_(1), l_(2), l_(3) are respectively the perpendicular from the vertices of a triangle on the opposite side, then show that l_(1)l_(2) l_(3) =(a^(2)b ^(2) c^(2))/(8R^(3)).

If l^(prime)(x) means logloglog x , the log being repeated r times, then int[x l(x)l^2(x)l^3(x) l^(prime)(x)]^(-1)d s is equal to l^(r+1)(x)+C (b) (l^(r+1)(x))/(r+1)+C l^r(x)+C (d) none of these

If (alpha, beta) is the foot of perpendicular from (x_1, y_1) to line lx+my+n=0 , then (A) (x_1 - alpha)/l = (y_1 - beta)/m (B) (x-1 - alpha)/l) = (lx_1 + my_1 + n)/(l^2+m^2) (C) (y_1 - beta)/m = (lx_1 + my_1 +n)/(l^2 +m^2) (D) (x-alpha)/l = (lalpha+mbeta+n)/(l^2+m^2)

Supose directioncoisnes of two lines are given by u l+vm+wn=0 and al^2+bm^2+cn^2=0 where u,v,w,a,b,c are arbitrary constnts and l,m,n are directioncosines of the lines. For u=v=w=1 directionc isines of both lines satisfy the relation. (A) (b+c)(n/l)^2+2b(n/l)+(a+b)=0 (B) (c+a)(l/m)^2+2c(l/m)+(b+c)=0 (C) (a+b)(m/n)^2+2a(m/n)+(c+a)=0 (D) all of the above

if tantheta+sectheta=l then prove that sectheta=(l^2+1)/(2l)

if tantheta+sectheta=l then prove that sectheta=(l^2+1)/(2l)

If (l_(1), m_(1), n_(1)) , (l_(2), m_(2), n_(2)) are D.C's of two lines, then (l_(1)m_(2)-l_(2)m_(1))^2+(m_(1)n_(2)-n_(1)m_(2))^2+(n_(1)l_(2)-n_(2)l_(1))^2+(l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2))^2=