Home
Class 12
MATHS
1+(2)/(4) + (2.5)/(4.8)+(2.5.8)/(4.8.12)...

`1+(2)/(4) + (2.5)/(4.8)+(2.5.8)/(4.8.12)+(2.5.8.11)/(4.8.12.16)+…..=`

A

`4^(-2//3)`

B

`root(5)(16)`

C

`root(3)(4)`

D

`4^(2//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ 1 + \frac{2}{4} + \frac{2 \cdot 5}{4 \cdot 8} + \frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16} + \ldots \] we can analyze the pattern in the terms and relate it to the binomial theorem. ### Step 1: Identify the pattern in the series The series can be rewritten as: \[ 1 + \frac{2}{4} + \frac{2 \cdot 5}{4 \cdot 8} + \frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16} + \ldots \] Notice that the numerators consist of products of terms that increase by 3, starting from 2, while the denominators are products of terms that increase by 4, starting from 4. ### Step 2: Relate the series to the binomial theorem The binomial theorem states that: \[ (1 - x)^{-n} = \sum_{k=0}^{\infty} \frac{n(n+1)(n+2)\ldots(n+k-1)}{k!} x^k \] We can relate our series to this expansion. ### Step 3: Compare terms The first term of the series is 1, which corresponds to \( (1 - x)^{-n} \) when \( k = 0 \). The second term \( \frac{2}{4} \) can be matched with \( nx \), where \( n \) is some constant we need to determine. ### Step 4: Set up equations From the second term: \[ nx = \frac{2}{4} \implies nx = \frac{1}{2} \] From the third term: \[ \frac{n(n+1)}{2} x^2 = \frac{2 \cdot 5}{4 \cdot 8} \] Calculating the right-hand side: \[ \frac{2 \cdot 5}{4 \cdot 8} = \frac{10}{32} = \frac{5}{16} \] ### Step 5: Solve for \( n \) and \( x \) Now we have two equations: 1. \( nx = \frac{1}{2} \) 2. \( \frac{n(n+1)}{2} x^2 = \frac{5}{16} \) From the first equation, we can express \( n \) in terms of \( x \): \[ n = \frac{1}{2x} \] Substituting this into the second equation: \[ \frac{\left(\frac{1}{2x}\right)\left(\frac{1}{2x} + 1\right)}{2} x^2 = \frac{5}{16} \] ### Step 6: Simplify and solve This simplifies to: \[ \frac{1}{4x^2} \left(\frac{1 + 2x}{2}\right) x^2 = \frac{5}{16} \] This leads to: \[ \frac{1 + 2x}{8} = \frac{5}{16} \] Cross-multiplying gives: \[ 2(1 + 2x) = 5 \implies 2 + 4x = 5 \implies 4x = 3 \implies x = \frac{3}{4} \] ### Step 7: Find \( n \) Substituting \( x = \frac{3}{4} \) back into \( n = \frac{1}{2x} \): \[ n = \frac{1}{2 \cdot \frac{3}{4}} = \frac{2}{3} \] ### Step 8: Final Result Now we have \( n = \frac{2}{3} \) and \( x = \frac{3}{4} \). The series can be expressed as: \[ (1 - x)^{-n} = (1 - \frac{3}{4})^{-\frac{2}{3}} = (1/4)^{-\frac{2}{3}} = 4^{\frac{2}{3}} \] Thus, the value of the series is: \[ \boxed{4^{\frac{2}{3}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(3)/(4.8)+(3.5)/(4.8.12)+(3.5.7)/(4.8.12.16)+….=

Find (1)/(4)-(5)/(4.8)+(5.7)/(4.8.12)-…....=

Show that (3)/(4.8)-(3.5)/(4.8.12) + (3.5.7)/(4.8.12.16) - …… = sqrt(2/3) -3/4

Show that (5)/(6.12) + (5.8)/(6.12.18) + (5.8.11)/(6.12.18.24) + ….. = (3root(3)(4) -4)/(6)

Show that + 1/4 + (1.3)/(4.8) + (1.3.5)/(4.8.12) + …….= sqrt2

Show that 1+3/4 + (3.5)/(4.8)+ (3.5.7)/(4.8.12)+ …… = 2sqrt2

Show that 1 - 3/4 + (3.5)/(4.8)- (3.5.7)/(4.8.12)+……..= sqrt((8/27))

(4)/(1.3)-(6)/(2.4)+(12)/(5.7)-(14)/(6.8)+….=

Which of the following orders of the fractions are in ascending order ? (a).1/(8), 2/(8), 5/(8) (b).3/(4), 1/(4), 2/(4) (c).1/(2), 4/(2), 3/(2) (d). 4/(16), 2/(16), 1/(16)

Which is greater: (3)/(5) of (1)/(4) or (2)/(7) of (5)/(8) ?