Home
Class 12
MATHS
(3)/(4.8)+(3.5)/(4.8.12)+(3.5.7)/(4.8.12...

`(3)/(4.8)+(3.5)/(4.8.12)+(3.5.7)/(4.8.12.16)+….=`

A

`sqrt(3/2) - 3/4`

B

`sqrt(2/3) - 3/4 `

C

`sqrt(3/2) - 1/4`

D

`sqrt(2/3) -1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{3}{4 \cdot 8} + \frac{3 \cdot 5}{4 \cdot 8 \cdot 12} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16} + \ldots \] we can rewrite the terms in a more manageable form. ### Step 1: Rewrite the series Notice that the numerators can be expressed in terms of double factorials. The pattern in the numerators is \(3, 3 \cdot 5, 3 \cdot 5 \cdot 7, \ldots\), which can be generalized as: \[ \frac{3 \cdot (2n + 1)}{4 \cdot 8 \cdot 12 \cdots (4n)} \] where \(n\) starts from 0. Thus, we can write: \[ S = \sum_{n=0}^{\infty} \frac{3 \cdot (2n + 1)!!}{(4n)!!} \] ### Step 2: Factor out constants We can factor out constants from the series: \[ S = \frac{3}{4} \sum_{n=0}^{\infty} \frac{(2n + 1)!!}{(4n)!!} \] ### Step 3: Recognize the series The series can be recognized as a form that can be evaluated using the binomial theorem or generating functions. Specifically, we can relate it to the binomial series expansion: \[ (1 - x)^{-p} = \sum_{n=0}^{\infty} \frac{(p+n-1)!}{n!(p-1)!} x^n \] ### Step 4: Use the binomial theorem From the binomial theorem, we can relate our series to a known result. We can express our series in terms of a binomial coefficient: \[ S = \frac{3}{4} \cdot (1 - \frac{1}{4})^{-3/2} \] ### Step 5: Simplify the expression Now, simplifying the expression: \[ S = \frac{3}{4} \cdot (1 - \frac{1}{4})^{-3/2} = \frac{3}{4} \cdot ( \frac{3}{4})^{-3/2} \] Calculating this gives: \[ S = \frac{3}{4} \cdot \left(\frac{4}{3}\right)^{3/2} = \frac{3}{4} \cdot \frac{8}{3\sqrt{3}} = \frac{2\sqrt{3}}{3} \] ### Final Result Thus, the final result of the series is: \[ S = \frac{2\sqrt{3}}{3} - \frac{3}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(2)/(4) + (2.5)/(4.8)+(2.5.8)/(4.8.12)+(2.5.8.11)/(4.8.12.16)+…..=

Show that 1 - 3/4 + (3.5)/(4.8)- (3.5.7)/(4.8.12)+……..= sqrt((8/27))

Show that 1+3/4 + (3.5)/(4.8)+ (3.5.7)/(4.8.12)+ …… = 2sqrt2

Find (1)/(4)-(5)/(4.8)+(5.7)/(4.8.12)-…....=

Show that + 1/4 + (1.3)/(4.8) + (1.3.5)/(4.8.12) + …….= sqrt2

Show that (5)/(6.12) + (5.8)/(6.12.18) + (5.8.11)/(6.12.18.24) + ….. = (3root(3)(4) -4)/(6)

Find: (7)/(4) + ((3)/(4) + (5)/(8))

(4)/(1.3)-(6)/(2.4)+(12)/(5.7)-(14)/(6.8)+….=

If t = 1 - 1/8 + (1.3)/(8.16) -(1.3.5)/(8.16.24) + …… then prove that 5t^2 = 4

Add (-3)/(8) and (5)/(-12) .