Home
Class 12
MATHS
Find 1/2.""^10C0 -""^10C1 +2.""^10C2 - 2...

Find `1/2.""^10C_0 -""^10C_1 +2.""^10C_2 - 2^2.""^10C_3+…..+2^9. ""^10C_10 = ` ?

A

only I

B

only II

C

both I and II

D

neither I nor II

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

""^21C_0 + ""^21C_1 + ""^21C_2 + ……..+ ""^21C_10 =

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

""^10C_1 . ""^9C_5 + ""^10C_2. ""^9C_4 + ""^10C_3. ""^9C_3 + ""^10C_4. ""^9C_2 + ""^10C_5. ""^9C_1 + ""^10C_6 = ""^19C_6 + x then x =

Find the sum ^20C_10.^15C_0+^20C_9.^15C_1+^20C_8.^15C_2+....+^20C_0.^15C_10

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :