Home
Class 12
MATHS
If (1+x -2x^2)^8 =1 +a1x + a2x^2+……+a16x...

If `(1+x -2x^2)^8 =1 +a_1x + a_2x^2+……+a_16x^16, ` then `a_2+a_4+a_6+……+a_16` = ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients \( a_2 + a_4 + a_6 + \ldots + a_{16} \) from the expansion of \( (1 + x - 2x^2)^8 \). ### Step-by-Step Solution: 1. **Identify the expression to expand**: We are given the expression \( (1 + x - 2x^2)^8 \). 2. **Use the Binomial Theorem**: According to the Binomial Theorem, the expansion of \( (a + b + c)^n \) can be expressed as a sum of terms of the form \( \frac{n!}{p!q!r!} a^p b^q c^r \) where \( p + q + r = n \). 3. **Set up the equations**: We want to find the coefficients of even powers of \( x \). To do this, we will evaluate the expression at \( x = 1 \) and \( x = -1 \). 4. **Evaluate at \( x = 1 \)**: \[ (1 + 1 - 2 \cdot 1^2)^8 = (1 + 1 - 2)^8 = 0^8 = 0 \] This gives us the equation: \[ 0 = 1 + a_1 + a_2 + a_3 + \ldots + a_{16} \quad \text{(Equation 1)} \] 5. **Evaluate at \( x = -1 \)**: \[ (1 - 1 - 2 \cdot (-1)^2)^8 = (1 - 1 - 2)^8 = (-2)^8 = 256 \] This gives us the equation: \[ 256 = 1 - a_1 + a_2 - a_3 + \ldots + a_{16} \quad \text{(Equation 2)} \] 6. **Add the two equations**: Adding Equation 1 and Equation 2: \[ 0 + 256 = (1 + a_1 + a_2 + a_3 + \ldots + a_{16}) + (1 - a_1 + a_2 - a_3 + \ldots + a_{16}) \] This simplifies to: \[ 256 = 2 + 2(a_2 + a_4 + a_6 + \ldots + a_{16}) \] 7. **Solve for the sum of coefficients**: Rearranging gives: \[ 256 - 2 = 2(a_2 + a_4 + a_6 + \ldots + a_{16}) \] \[ 254 = 2(a_2 + a_4 + a_6 + \ldots + a_{16}) \] Dividing by 2: \[ a_2 + a_4 + a_6 + \ldots + a_{16} = 127 \] ### Final Answer: \[ a_2 + a_4 + a_6 + \ldots + a_{16} = 127 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16 , then a_1 +a_3 + a_5 + ……+a_15 = ?

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

(1 + x+x^2)^8 = a_0 + a_1x +…….+a_16 x^16 then a_1 - a_3 + a_5- a_7 + ……..-a_15=

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

If (1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12) , then find a_2+ a_4 + ... + a_12

If (1+x-2x^2)^6=1+a_1x+a_2x^(2)++a_(12)x^(12), then find the value of a_2+a_4+a_6++a_(12)dot