Home
Class 12
MATHS
If (1+x-2x^2)^8 = 1 + a1x + a2x^2 + ……+ ...

If `(1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + ……+ a_16 x^16`, then `a_1 +a_3 + a_5 + ……+a_15 = ?`

A

`2^7`

B

`-2^7`

C

`3^2`

D

`4^6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( a_1 + a_3 + a_5 + \ldots + a_{15} \) from the expansion of \( (1 + x - 2x^2)^8 \). ### Step-by-Step Solution: 1. **Write the expression**: We start with the expression given in the problem: \[ (1 + x - 2x^2)^8 = 1 + a_1 x + a_2 x^2 + \ldots + a_{16} x^{16} \] 2. **Substitute \( -x \)**: To find the sum of the coefficients of the odd powers of \( x \), we can substitute \( -x \) into the expression: \[ (1 - x - 2(-x^2))^8 = (1 - x + 2x^2)^8 \] This gives us: \[ 1 - a_1 x + a_2 x^2 - a_3 x^3 + a_4 x^4 - a_5 x^5 + \ldots - a_{16} x^{16} \] 3. **Set up the equation**: Now we have two equations: \[ (1 + x - 2x^2)^8 = 1 + a_1 x + a_2 x^2 + \ldots + a_{16} x^{16} \tag{1} \] \[ (1 - x + 2x^2)^8 = 1 - a_1 x + a_2 x^2 - a_3 x^3 + \ldots - a_{16} x^{16} \tag{2} \] 4. **Subtract the two equations**: Subtract equation (2) from equation (1): \[ (1 + x - 2x^2)^8 - (1 - x + 2x^2)^8 = (a_1 + a_3 + a_5 + \ldots + a_{15}) \cdot 2x \] The even powers will cancel out, leaving only the odd powers. 5. **Evaluate at \( x = 1 \)**: Now, we evaluate both sides at \( x = 1 \): \[ (1 + 1 - 2 \cdot 1^2)^8 - (1 - 1 + 2 \cdot 1^2)^8 = 2(a_1 + a_3 + a_5 + \ldots + a_{15}) \] Simplifying this gives: \[ (1 + 1 - 2)^8 - (1 - 1 + 2)^8 = 2(a_1 + a_3 + a_5 + \ldots + a_{15}) \] \[ (0)^8 - (2)^8 = 2(a_1 + a_3 + a_5 + \ldots + a_{15}) \] \[ 0 - 256 = 2(a_1 + a_3 + a_5 + \ldots + a_{15}) \] \[ -256 = 2(a_1 + a_3 + a_5 + \ldots + a_{15}) \] 6. **Solve for the sum**: Dividing both sides by 2 gives: \[ a_1 + a_3 + a_5 + \ldots + a_{15} = -128 \] ### Final Answer: \[ a_1 + a_3 + a_5 + \ldots + a_{15} = -128 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1 + x+x^2)^8 = a_0 + a_1x +…….+a_16 x^16 then a_1 - a_3 + a_5- a_7 + ……..-a_15=

If (1+x -2x^2)^8 =1 +a_1x + a_2x^2+……+a_16x^16, then a_2+a_4+a_6+……+a_16 = ?

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

If (1+x-2x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(16)x^(16) then the sum a1+a3+a5+.......+a15 ​ ​ is equal to

If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+……..+a_20x^20 then (A) a_1=20 (B) a_2=210 (C) a_3=1500 (D) a_20=2^3.3^7