Home
Class 12
MATHS
(1+x)^25 = sum(r = 0)^(25) Cr x^r then ...

`(1+x)^25 = sum_(r = 0)^(25) C_r x^r` then `C_1 - C_3 + C_5 - C_7 + ……-C_25 = `

A

`2^10`

B

`-2^10`

C

`2^12`

D

`-2^12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_1 - C_3 + C_5 - C_7 + \ldots - C_{25} \) where \( C_r \) represents the binomial coefficient \( \binom{25}{r} \), we can use the properties of complex numbers and the binomial theorem. ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial expansion of \( (1 + x)^{25} \) is given by: \[ (1 + x)^{25} = \sum_{r=0}^{25} C_r x^r \] where \( C_r = \binom{25}{r} \). 2. **Substituting Complex Numbers**: To find the alternating sum \( C_1 - C_3 + C_5 - C_7 + \ldots - C_{25} \), we can utilize the imaginary unit \( i \) (where \( i^2 = -1 \)). We will evaluate \( (1 + i)^{25} \) and \( (1 - i)^{25} \). 3. **Calculating \( (1 + i)^{25} \)**: Using the binomial theorem: \[ (1 + i)^{25} = \sum_{r=0}^{25} C_r i^r \] This can be separated into real and imaginary parts. 4. **Calculating \( (1 - i)^{25} \)**: Similarly, \[ (1 - i)^{25} = \sum_{r=0}^{25} C_r (-i)^r \] This also separates into real and imaginary parts. 5. **Adding the Two Expansions**: When we add \( (1 + i)^{25} \) and \( (1 - i)^{25} \): \[ (1 + i)^{25} + (1 - i)^{25} = 2 \sum_{k=0}^{12} C_{2k} (-1)^k \] This gives us the sum of the even indexed coefficients. 6. **Subtracting the Two Expansions**: When we subtract \( (1 - i)^{25} \) from \( (1 + i)^{25} \): \[ (1 + i)^{25} - (1 - i)^{25} = 2i \sum_{k=0}^{12} C_{2k + 1} (-1)^k \] This gives us the alternating sum of the odd indexed coefficients, which is precisely what we need. 7. **Finding the Values**: We can express \( (1 + i)^{25} \) and \( (1 - i)^{25} \) using polar coordinates: \[ 1 + i = \sqrt{2} e^{i \frac{\pi}{4}} \quad \Rightarrow \quad (1 + i)^{25} = (\sqrt{2})^{25} e^{i \frac{25\pi}{4}} = 2^{12.5} e^{i \frac{25\pi}{4}} \] \[ 1 - i = \sqrt{2} e^{-i \frac{\pi}{4}} \quad \Rightarrow \quad (1 - i)^{25} = (\sqrt{2})^{25} e^{-i \frac{25\pi}{4}} = 2^{12.5} e^{-i \frac{25\pi}{4}} \] 8. **Calculating the Imaginary Part**: The imaginary part of \( (1 + i)^{25} - (1 - i)^{25} \) gives: \[ 2i \cdot 2^{12} \sin\left(\frac{25\pi}{4}\right) \] Since \( \frac{25\pi}{4} = 6\pi + \frac{\pi}{4} \), we have: \[ \sin\left(\frac{25\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] 9. **Final Calculation**: Thus, the final result is: \[ C_1 - C_3 + C_5 - C_7 + \ldots - C_{25} = 2^{12} \cdot \frac{1}{\sqrt{2}} = 2^{12 - 0.5} = 2^{11.5} = 2^{12} \] ### Final Answer: \[ C_1 - C_3 + C_5 - C_7 + \ldots - C_{25} = 2^{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x)^n = sum_(r = 0)^(n) C_r x^r then match the following

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If sum_(r=1)^(oo) (C^r)/(r!) =1 then C =

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a_r is a. (.^nC_2)^2 b. .^n C_r .^n C_(r+1) c. .^(2n) C_r d. .^(2n) C_(r+1)

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

Prove that sum_(r=1)^5 5C_r=31

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If (1-x^2)^n=sum_(r=0)^n a_r x^r(1-x)^(2n-r),t h e na_r is equal to ^n C_r b. ^n C_r3^r c. ^2n C_r d. ^n C_r2^r