Home
Class 12
MATHS
Smaller of (19^10 + 20^10) and 21^10 is...

Smaller of `(19^10 + 20^10)` and `21^10` is

A

a) `19^10 + 20^10`

B

b) `21^10`

C

c) Both are equal

D

d) can not be decided

Text Solution

AI Generated Solution

The correct Answer is:
To find the smaller of \(19^{10} + 20^{10}\) and \(21^{10}\), we can use the Binomial Theorem for expansion and comparison. Here’s a step-by-step solution: ### Step 1: Rewrite \(19^{10}\) We can express \(19\) as \(20 - 1\): \[ 19^{10} = (20 - 1)^{10} \] ### Step 2: Apply the Binomial Theorem Using the Binomial Theorem, we can expand \((20 - 1)^{10}\): \[ (20 - 1)^{10} = \sum_{k=0}^{10} \binom{10}{k} (20)^{10-k} (-1)^k \] This gives us: \[ 19^{10} = 20^{10} - \binom{10}{1} 20^9 + \binom{10}{2} 20^8 - \binom{10}{3} 20^7 + \ldots + (-1)^{10} \] ### Step 3: Combine with \(20^{10}\) Now, we add \(20^{10}\) to \(19^{10}\): \[ 19^{10} + 20^{10} = \left(20^{10} - \binom{10}{1} 20^9 + \binom{10}{2} 20^8 - \binom{10}{3} 20^7 + \ldots + 1\right) + 20^{10} \] This simplifies to: \[ 19^{10} + 20^{10} = 2 \cdot 20^{10} - \binom{10}{1} 20^9 + \binom{10}{2} 20^8 - \binom{10}{3} 20^7 + \ldots + 1 \] ### Step 4: Expand \(21^{10}\) Next, we expand \(21^{10}\) using the Binomial Theorem: \[ 21^{10} = (20 + 1)^{10} = \sum_{k=0}^{10} \binom{10}{k} 20^{10-k} (1)^k \] This gives us: \[ 21^{10} = 20^{10} + \binom{10}{1} 20^9 + \binom{10}{2} 20^8 + \binom{10}{3} 20^7 + \ldots + 1 \] ### Step 5: Compare \(19^{10} + 20^{10}\) and \(21^{10}\) Now we need to compare: \[ 19^{10} + 20^{10} \quad \text{and} \quad 21^{10} \] From our expansions: \[ 19^{10} + 20^{10} = 2 \cdot 20^{10} - \text{(terms with alternating signs)} \] \[ 21^{10} = 20^{10} + \text{(terms with all positive signs)} \] ### Step 6: Analyze the difference To find which is smaller, we can analyze: \[ 21^{10} - (19^{10} + 20^{10}) \] This results in: \[ 21^{10} - (19^{10} + 20^{10}) = (20^{10} + \text{positive terms}) - (2 \cdot 20^{10} - \text{negative terms}) \] This simplifies to: \[ = -20^{10} + \text{(positive terms + negative terms)} \] Since the positive terms are greater than the negative terms, we conclude: \[ 21^{10} > 19^{10} + 20^{10} \] ### Conclusion Thus, the smaller of \(19^{10} + 20^{10}\) and \(21^{10}\) is: \[ \boxed{19^{10} + 20^{10}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the squares of the length of the tangents from the points (18, 18), (10, 20) and (21, 21) to the circle x^(2) + y^(2) =25 is equal to ________ .

If the 10^(th) term of an HP is 21 and 21^(st) term of the same HP is 10, then find the 210^(th) term.

What is the value of (cos 10 ^(@) + sin 20^(@))/( cos 20^(@) - sin 10 ^(@))?

A bar of iron is 10 cm at 20^(@)C . At 19^(@)C it will be ( alpha of iron =11xx10^-6//^(@)C )

A bar of iron is 10 cm at 20^(@)C . At 19^(@)C it will be (alpha_(Fe)=11xx10^(-6)//.^(@)C)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

The number of integers between -20 and - 10 are

Solve x^(2) - 10x + 21= 0

The value of sum_(r=0)^(10)(r)^(20)C_r is equal to: a. 20(2^(18)+^(19)C_(10)) b. 10(2^(18)+^(19)C_(10)) c. 20(2^(18)+^(19)C_(11)) d. 10(2^(18)+^(19)C_(11))

A sample of neon is found to consist of ""_(10)^(20)Ne, ""_(10)^(21)Ne and ""_(10)^(22)Ne in the percentage 90.92, 0.26 and 8.82 respectively. Find the average atomic mass of neon.