Home
Class 12
MATHS
Find C0 + (C1)/(2) + (C2)/(2^2) + (C3)/...

Find ` C_0 + (C_1)/(2) + (C_2)/(2^2) + (C_3)/(2^3)+…..+(C_n)/(2^n)=` ?

A

`(1//2)^n`

B

`(3//2)^n`

C

`(3//2)^(2n)`

D

`(3//2)^(-n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \[ S = C_0 + \frac{C_1}{2} + \frac{C_2}{2^2} + \frac{C_3}{2^3} + \ldots + \frac{C_n}{2^n} \] where \( C_k \) represents the binomial coefficients from the binomial expansion of \( (1 + x)^n \). ### Step-by-step Solution: 1. **Understanding Binomial Expansion**: The binomial theorem states that: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Substituting \( x = \frac{1}{2} \)**: We want to evaluate the sum \( S \) using the binomial expansion. We substitute \( x = \frac{1}{2} \) into the binomial expansion: \[ (1 + \frac{1}{2})^n = C_0 + C_1 \cdot \frac{1}{2} + C_2 \cdot \left(\frac{1}{2}\right)^2 + C_3 \cdot \left(\frac{1}{2}\right)^3 + \ldots + C_n \cdot \left(\frac{1}{2}\right)^n \] 3. **Calculating the Left Side**: Now calculate the left side: \[ (1 + \frac{1}{2})^n = \left(\frac{3}{2}\right)^n \] 4. **Equating Both Sides**: From the substitution, we have: \[ S = C_0 + \frac{C_1}{2} + \frac{C_2}{2^2} + \frac{C_3}{2^3} + \ldots + \frac{C_n}{2^n} = \left(\frac{3}{2}\right)^n \] 5. **Final Result**: Therefore, the required sum is: \[ S = \left(\frac{3}{2}\right)^n \] ### Final Answer: \[ C_0 + \frac{C_1}{2} + \frac{C_2}{2^2} + \frac{C_3}{2^3} + \ldots + \frac{C_n}{2^n} = \left(\frac{3}{2}\right)^n \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n in N prove that (a) 3 C_0- 8C_1+13C_2-18C_3+...."upto" (n+1) term=0 if n ge 2 (b ) 2C_0+2^2(C_1)/(2)+2^3(C_2)/(3)+2^4C_(3)/4+....+2^(n+1)(C_n)/(n+1)=(3^n+1-1)/(n+1) ( c) C_0^2+(C_1^2)/2+C_2^2/3+....+C_n^2/(n+1)=((2n+1)!)/(((n+1)!)^2)

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

(C_0)/(1. 3)-(C_1)/(2. 3)+(C_2)/(3. 3)-(C_3)/(4. 3)+...... +(-1)^n(C_n)/((n+1)*3) is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .