Home
Class 12
MATHS
Find ""^11C0 + ""^11C1 + ""^11C2 + ……+ "...

Find `""^11C_0 + ""^11C_1 + ""^11C_2 + ……+ ""^11C_5 = ` ?

A

`2^7`

B

`2^8`

C

`2^9`

D

`2^10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( \binom{11}{0} + \binom{11}{1} + \binom{11}{2} + \ldots + \binom{11}{5} \), we can follow these steps: ### Step 1: Understand the Binomial Coefficients The binomial coefficient \( \binom{n}{r} \) is defined as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] In this case, \( n = 11 \) and \( r \) varies from 0 to 5. ### Step 2: Calculate Each Binomial Coefficient We will calculate each of the required binomial coefficients: 1. **Calculate \( \binom{11}{0} \)**: \[ \binom{11}{0} = \frac{11!}{0! \cdot 11!} = 1 \] 2. **Calculate \( \binom{11}{1} \)**: \[ \binom{11}{1} = \frac{11!}{1! \cdot 10!} = \frac{11}{1} = 11 \] 3. **Calculate \( \binom{11}{2} \)**: \[ \binom{11}{2} = \frac{11!}{2! \cdot 9!} = \frac{11 \times 10}{2 \times 1} = 55 \] 4. **Calculate \( \binom{11}{3} \)**: \[ \binom{11}{3} = \frac{11!}{3! \cdot 8!} = \frac{11 \times 10 \times 9}{3 \times 2 \times 1} = 165 \] 5. **Calculate \( \binom{11}{4} \)**: \[ \binom{11}{4} = \frac{11!}{4! \cdot 7!} = \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1} = 330 \] 6. **Calculate \( \binom{11}{5} \)**: \[ \binom{11}{5} = \frac{11!}{5! \cdot 6!} = \frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} = 462 \] ### Step 3: Sum the Binomial Coefficients Now we add all the calculated values: \[ \binom{11}{0} + \binom{11}{1} + \binom{11}{2} + \binom{11}{3} + \binom{11}{4} + \binom{11}{5} = 1 + 11 + 55 + 165 + 330 + 462 \] Calculating the sum: \[ 1 + 11 = 12 \] \[ 12 + 55 = 67 \] \[ 67 + 165 = 232 \] \[ 232 + 330 = 562 \] \[ 562 + 462 = 1024 \] ### Final Result Thus, the final result is: \[ \binom{11}{0} + \binom{11}{1} + \binom{11}{2} + \binom{11}{3} + \binom{11}{4} + \binom{11}{5} = 1024 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

""^11C_0^2 - ""^11C_1^2 + ""^11C_2^2 - ""^11C_3^2 + ……- "^11C_11^2 =

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

If a cricket team of 11 players is to be selected from 8 batsmen, 6 bowlers, 4 all-rounder and 2 wicket keepers, then Number of selection when 2 particular batsmen dont want to play when a particular bowler will play is (A) .^(17)C_10 + ^(19)C_11 (B) .^(17)C_10 + ^(19)C_11 + ^(17)C_11 (C) . ^(17)C_10 + ^(20)C_11 (D) . ^(19)C_10 + ^(19)C_11

The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (a) 7*"^(11)C_(6) (b) (3)^6*"^(11)C_(6) (c) 3^(5)*"^(11)C_(5) (d) -12*2^(11)

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Evaluate ""^(11)C_(2) .

Find 11 t h term of the A.P. 10. 0 ,\ 10. 5 ,\ 11. 0 ,\ 11. 5 ,\ ddot

The hour hand of a clock is 6 m long. The area swept by it between 11.20 am and 11.55 am is (a) 2. 75\ c m^2 (b) 5. 5\ c m^2 (c) 11\ c m^2 (d) 10\ c m^2

If A= {3, 5, 7, 9, 11} , B = {7, 9, 11 , 13} , C = {11 , 13 , 15} and D = {15 , 17} ; find(i) A nnB (ii) B nnC (iii) Ann C nnD (iv) A nnC (v) B nnD (vi) A nn(Buu C) (vii) Ann D