Home
Class 12
MATHS
C0^2 -C1^2 + C2^2 - ………-C15^2 =...

`C_0^2 -C_1^2 + C_2^2 - ………-C_15^2` =

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots - C_{15}^2 \), we will use the properties of binomial coefficients. ### Step-by-step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficient \( C_n^k \) represents the number of ways to choose \( k \) elements from a set of \( n \) elements. The coefficients can be calculated using the formula: \[ C_n^k = \frac{n!}{k!(n-k)!} \] 2. **Recognizing the Pattern**: The expression alternates between positive and negative signs. We can rewrite the expression as: \[ \sum_{k=0}^{15} (-1)^k C_{15}^k \] 3. **Using the Binomial Theorem**: According to the binomial theorem, the sum of the binomial coefficients with alternating signs can be expressed as: \[ (1 - 1)^{15} = 0 \] This is because \( (1 - 1)^{n} = 0 \) for any positive integer \( n \). 4. **Conclusion**: Since \( n = 15 \) is odd, the sum \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots - C_{15}^2 \) evaluates to: \[ 0 \] ### Final Answer: \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots - C_{15}^2 = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

C_0^2 + C_1^2 + C_2^2 + ………+C_25^2 =

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If C_0, C_1, C_2,………C_n are binomial coefficients int eh expansion of (1+x)^n then and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

""^11C_0^2 - ""^11C_1^2 + ""^11C_2^2 - ""^11C_3^2 + ……- "^11C_11^2 =

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

C_0 + 2.C_1 + 4.C_2 + …….+C_n.2^n = 243 , then n =

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n then find C_0 + C_3 + C_6 + …….

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .