Home
Class 12
MATHS
Find 1/2.""^10C0 -""^10C1 +2.""^10C2 - 2...

Find `1/2.""^10C_0 -""^10C_1 +2.""^10C_2 - 2^2.""^10C_3+…..+2^9. ""^10C_10 = ` ?

A

`1//2`

B

`1//4`

C

`3//2`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( S = \frac{1}{2} \binom{10}{0} - \binom{10}{1} + 2 \binom{10}{2} - 2^2 \binom{10}{3} + \ldots + 2^9 \binom{10}{10} \), we will follow these steps: ### Step 1: Define the sum Let us denote the sum as \( S \): \[ S = \frac{1}{2} \binom{10}{0} - \binom{10}{1} + 2 \binom{10}{2} - 2^2 \binom{10}{3} + \ldots + 2^9 \binom{10}{10} \] ### Step 2: Multiply the sum by 2 Now, multiply the entire sum \( S \) by 2: \[ 2S = 2 \left( \frac{1}{2} \binom{10}{0} - \binom{10}{1} + 2 \binom{10}{2} - 2^2 \binom{10}{3} + \ldots + 2^9 \binom{10}{10} \right) \] This simplifies to: \[ 2S = \binom{10}{0} - 2 \binom{10}{1} + 2^2 \binom{10}{2} - 2^3 \binom{10}{3} + \ldots + 2^{10} \binom{10}{10} \] ### Step 3: Recognize the binomial expansion The right-hand side can be recognized as the expansion of \( (1 - 2)^{10} \): \[ 2S = (1 - 2)^{10} = (-1)^{10} = 1 \] ### Step 4: Solve for \( S \) Now, we can solve for \( S \): \[ 2S = 1 \implies S = \frac{1}{2} \] ### Final Answer Thus, the value of the original sum is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Observe the following statements : Statement - I : 1/2 . ""^10C_0 - ""^10C_1 + 2. ""^10C_2 - 2^2. ""^10C_3 + ……+ 2^9. ""^10C_10 = -1/2 Statement - II : ""^20C_1 - 2(""^20C_2) + 3.(""^20C_3)-…..-20.(""^20C_20) = 0 Then the false statements are :

""^21C_0 + ""^21C_1 + ""^21C_2 + ……..+ ""^21C_10 =

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

""^10C_1 . ""^9C_5 + ""^10C_2. ""^9C_4 + ""^10C_3. ""^9C_3 + ""^10C_4. ""^9C_2 + ""^10C_5. ""^9C_1 + ""^10C_6 = ""^19C_6 + x then x =

Find the sum ^20C_10.^15C_0+^20C_9.^15C_1+^20C_8.^15C_2+....+^20C_0.^15C_10

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9