Home
Class 12
MATHS
C1 + 2. C2 + 3. C3 + …... + n. Cn=...

`C_1 + 2. C_2 + 3. C_3 + …... + n. C_n=`

A

`2^n`

B

`n.2^n`

C

`n.2^(n-1)`

D

`n.2^(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_1 + 2C_2 + 3C_3 + \ldots + nC_n \), we will utilize the Binomial Theorem and differentiation. Here’s a step-by-step solution: ### Step 1: Recall the Binomial Expansion The Binomial Theorem states that: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \( C_k \) represents the binomial coefficients. **Hint:** Remember that \( C_k = \binom{n}{k} \). ### Step 2: Differentiate the Binomial Expansion To incorporate the coefficients \( 1, 2, 3, \ldots, n \) into our series, we differentiate both sides of the equation with respect to \( x \): \[ \frac{d}{dx}[(1 + x)^n] = n(1 + x)^{n-1} \] On the right side, differentiating gives: \[ C_1 + 2C_2 x + 3C_3 x^2 + \ldots + nC_n x^{n-1} \] **Hint:** Differentiation will bring down the exponent as a coefficient. ### Step 3: Set \( x = 1 \) Now, we substitute \( x = 1 \) into the differentiated equation: \[ n(1 + 1)^{n-1} = C_1 + 2C_2(1) + 3C_3(1^2) + \ldots + nC_n(1^{n-1}) \] This simplifies to: \[ n \cdot 2^{n-1} = C_1 + 2C_2 + 3C_3 + \ldots + nC_n \] **Hint:** Substituting \( x = 1 \) simplifies the equation significantly. ### Step 4: Conclusion Thus, we find that: \[ C_1 + 2C_2 + 3C_3 + \ldots + nC_n = n \cdot 2^{n-1} \] **Final Answer:** \[ C_1 + 2C_2 + 3C_3 + \ldots + nC_n = n \cdot 2^{n-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

Prove that C_3 + 2.C_4+ 3.C_5 + ……..+ (n-2).C_n = (n-4).2^(n-1) + (n+2) where n > 3

With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

Find the value of C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n]

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

Prove that 3.C_0 + 6.C_1 + 12.C_2 + ………+3.2^n.C_n = 3^(n+1)

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .