Home
Class 12
MATHS
If ar is the coefficient of x^r in the e...

If `a_r` is the coefficient of `x^r` in the expansion of `(1+x)^n` then `a_1/a_0 + 2.a_2/a_1 + 3.a_3/a_2 + …..+n.(a_n)/(a_(n-1))` =

A

`(n(n+1))/(2)`

B

`(n(n+3))/(2)`

C

`(n(n-1))/(2)`

D

`n^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{a_1}{a_0} + 2 \cdot \frac{a_2}{a_1} + 3 \cdot \frac{a_3}{a_2} + \ldots + n \cdot \frac{a_n}{a_{n-1}} \] where \( a_r \) is the coefficient of \( x^r \) in the expansion of \( (1+x)^n \). ### Step 1: Identify the coefficients \( a_r \) The coefficients \( a_r \) can be expressed using the binomial coefficient: \[ a_r = \binom{n}{r} \] Thus, we have: - \( a_0 = \binom{n}{0} = 1 \) - \( a_1 = \binom{n}{1} = n \) - \( a_2 = \binom{n}{2} = \frac{n(n-1)}{2} \) - \( a_3 = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \) - ... - \( a_n = \binom{n}{n} = 1 \) ### Step 2: Calculate \( \frac{a_r}{a_{r-1}} \) Next, we calculate \( \frac{a_r}{a_{r-1}} \): \[ \frac{a_r}{a_{r-1}} = \frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n!/(r!(n-r)!)}{(n!/( (r-1)!(n-r+1)!)} = \frac{(n-r+1)}{r} \] ### Step 3: Substitute into the expression Now substituting \( \frac{a_r}{a_{r-1}} \) into the original expression: \[ \sum_{r=1}^{n} r \cdot \frac{a_r}{a_{r-1}} = \sum_{r=1}^{n} r \cdot \frac{(n-r+1)}{r} = \sum_{r=1}^{n} (n-r+1) \] ### Step 4: Simplify the summation The sum can be simplified: \[ \sum_{r=1}^{n} (n-r+1) = \sum_{r=1}^{n} (n+1 - r) = \sum_{r=1}^{n} (n+1) - \sum_{r=1}^{n} r \] Calculating each part: 1. The first part: \( \sum_{r=1}^{n} (n+1) = n(n+1) \) 2. The second part: \( \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \) Putting it together: \[ n(n+1) - \frac{n(n+1)}{2} = \frac{2n(n+1)}{2} - \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \] ### Final Result Thus, the required sum is: \[ \frac{n(n+1)}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If a_0,a_1,a_2,.... be the coefficients in the expansion of (1+x+x^2)^n in ascending powers of x. prove that : (i) a_0a_1-a_1a_2+a_2a_3-....=0

If a_0, a_1 , a_2 …..a_n are binomial coefficients then (1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) =

Write the first five terms in each of the following sequence: a_1=a_2=2,\ a_n=a_(n-1)-1,\ n >1 .

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n),for n=5.