Home
Class 12
MATHS
Find 1.""^20C1 - 2.""^20C2 + 3.""^20C3 -...

Find `1.""^20C_1 - 2.""^20C_2 + 3.""^20C_3 - …..-20.""^20C_20 = ? `

A

(a) 1

B

(b) 2

C

(c) `-1`

D

(d) 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(1 \cdot \binom{20}{1} - 2 \cdot \binom{20}{2} + 3 \cdot \binom{20}{3} - \ldots - 20 \cdot \binom{20}{20}\), we can use the identity involving combinations. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten using summation notation: \[ S = \sum_{r=1}^{20} (-1)^{r-1} r \cdot \binom{20}{r} \] 2. **Using the Identity**: We can use the identity \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \). In our case, \( n = 20 \): \[ r \cdot \binom{20}{r} = 20 \cdot \binom{19}{r-1} \] Thus, we can rewrite the sum \( S \): \[ S = \sum_{r=1}^{20} (-1)^{r-1} \cdot 20 \cdot \binom{19}{r-1} \] 3. **Factoring Out the Constant**: Since \( 20 \) is a constant, we can factor it out of the summation: \[ S = 20 \cdot \sum_{r=1}^{20} (-1)^{r-1} \cdot \binom{19}{r-1} \] 4. **Changing the Index of Summation**: Let \( k = r - 1 \). When \( r = 1 \), \( k = 0 \) and when \( r = 20 \), \( k = 19 \). Therefore, we can rewrite the sum: \[ S = 20 \cdot \sum_{k=0}^{19} (-1)^{k} \cdot \binom{19}{k} \] 5. **Using the Binomial Theorem**: The sum \( \sum_{k=0}^{n} (-1)^k \cdot \binom{n}{k} \) is equal to \( (1 - 1)^n = 0 \) for \( n > 0 \). Here, \( n = 19 \): \[ \sum_{k=0}^{19} (-1)^{k} \cdot \binom{19}{k} = 0 \] 6. **Final Calculation**: Thus, substituting back into our expression for \( S \): \[ S = 20 \cdot 0 = 0 \] ### Conclusion: The value of the original expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Observe the following statements : Statement - I : 1/2 . ""^10C_0 - ""^10C_1 + 2. ""^10C_2 - 2^2. ""^10C_3 + ……+ 2^9. ""^10C_10 = -1/2 Statement - II : ""^20C_1 - 2(""^20C_2) + 3.(""^20C_3)-…..-20.(""^20C_20) = 0 Then the false statements are :

The sum of the series ""^20C_0 - ""^20C_1 + ""^20C_2 - ""^20C_3 +…….""^20C_10 is

Prove that (""^20C_1)/(""^20C_0) + 2. (""^20C_2)/(""^20C_1) + 3. (""^20C_3)/(""^20C_2) + …..+20. (""^20C_20)/(""^20C_19) = 210

The sum of the series ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10 is:

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :