Home
Class 12
MATHS
sum(r=1)^(n) (-1)^(r-1) ""^nCr(a - r) =...

`sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) = `

A

a

B

`-a`

C

2a

D

3a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given summation problem, we need to evaluate the expression: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} (a - r) \] We can break this summation into two parts: 1. **Part 1:** \(\sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} a\) 2. **Part 2:** \(\sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} r\) Thus, we can express the original sum as: \[ S = a \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} - \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} r \] ### Step 1: Evaluate the first part The first part can be simplified using the binomial theorem. Specifically, we know that: \[ \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} = (1 - 1)^n = 0 \] Thus, we have: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} = 1 \] So, \[ S_1 = a \cdot 1 = a \] ### Step 2: Evaluate the second part For the second part, we can use the identity: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} r = n \cdot (-1)^{n-1} \] This can be derived from differentiating the binomial expansion. Therefore, we have: \[ S_2 = n \cdot (-1)^{n-1} \] ### Step 3: Combine the results Now, we can combine both parts to find the final result: \[ S = a - n \cdot (-1)^{n-1} \] Thus, the final answer is: \[ \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} (a - r) = a + n \cdot (-1)^{n-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Show that the HM of (2n+1)C_r and (2n+1)C_(r+1) is (2n+1)/(n+1) times of (2n)C_r Also show that sum_(r=1)^(2n-1) (-1)^(r-1)*r/(2nC_r)=n/(n+1) .