Home
Class 12
MATHS
""^11C0^2 - ""^11C1^2 + ""^11C2^2 - ""^1...

`""^11C_0^2 - ""^11C_1^2 + ""^11C_2^2 - ""^11C_3^2 + ……- "^11C_11^2 = `

A

0

B

`""^22C_11`

C

`(-1)^11. ""^22C_11`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \binom{11}{0}^2 - \binom{11}{1}^2 + \binom{11}{2}^2 - \binom{11}{3}^2 + \ldots - \binom{11}{11}^2 \), we will use the properties of binomial coefficients and the alternating sum. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten as: \[ S = \sum_{k=0}^{11} (-1)^k \binom{11}{k}^2 \] This represents an alternating sum of the squares of the binomial coefficients. **Hint**: Recognize that the expression involves alternating signs and squares of binomial coefficients. 2. **Using a Known Identity**: There is a known identity for the sum of squares of binomial coefficients: \[ \sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = (-1)^{n} \binom{n}{n/2} \quad \text{if } n \text{ is even, and } 0 \text{ if } n \text{ is odd.} \] **Hint**: Look for identities involving binomial coefficients and alternating sums. 3. **Determine the Parity of \( n \)**: In our case, \( n = 11 \), which is odd. According to the identity, if \( n \) is odd, the sum evaluates to 0: \[ S = 0 \] **Hint**: Check whether \( n \) is odd or even to apply the correct identity. 4. **Final Result**: Therefore, the value of the given expression is: \[ \boxed{0} \] **Hint**: Conclude by stating the final result clearly.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find ""^11C_0 + ""^11C_1 + ""^11C_2 + ……+ ""^11C_5 = ?

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

11^x/11^3=11^2

If a cricket team of 11 players is to be selected from 8 batsmen, 6 bowlers, 4 all-rounder and 2 wicket keepers, then Number of selection when 2 particular batsmen dont want to play when a particular bowler will play is (A) .^(17)C_10 + ^(19)C_11 (B) .^(17)C_10 + ^(19)C_11 + ^(17)C_11 (C) . ^(17)C_10 + ^(20)C_11 (D) . ^(19)C_10 + ^(19)C_11

Evaluate ""^(11)C_(2) .

The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (a) 7*"^(11)C_(6) (b) (3)^6*"^(11)C_(6) (c) 3^(5)*"^(11)C_(5) (d) -12*2^(11)

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

Determine n if (i) .^(2n) C_2: "^n C_2=12 :1 (ii) .^(2n) C_3: "^n C_3=11 :1

The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),(-2^12,2^11-x,2^11),(2^11,2^11,-2^12-x)|=0 is

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to