Home
Class 12
MATHS
The fifth term of (1 - (2x)/(3))^(3//4) ...

The fifth term of `(1 - (2x)/(3))^(3//4)` is

A

`(-5x^4)/(1152)`

B

`(5x^4)/(1152)`

C

` - (5x^4)/(1052)`

D

`(5x^4)/(1052)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fifth term of the expression \((1 - \frac{2x}{3})^{\frac{3}{4}}\), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, we have \(a = 1\), \(b = -\frac{2x}{3}\), and \(n = \frac{3}{4}\). ### Step 1: Identify the general term The general term \(T_{k+1}\) in the expansion is given by: \[ T_{k+1} = \binom{n}{k} a^{n-k} b^k \] Substituting our values, we get: \[ T_{k+1} = \binom{\frac{3}{4}}{k} (1)^{\frac{3}{4}-k} \left(-\frac{2x}{3}\right)^k = \binom{\frac{3}{4}}{k} \left(-\frac{2x}{3}\right)^k \] ### Step 2: Find the fifth term To find the fifth term, we need to set \(k = 4\) (since the first term corresponds to \(k = 0\)): \[ T_5 = \binom{\frac{3}{4}}{4} \left(-\frac{2x}{3}\right)^4 \] ### Step 3: Calculate the binomial coefficient The binomial coefficient \(\binom{\frac{3}{4}}{4}\) is calculated as: \[ \binom{\frac{3}{4}}{4} = \frac{\frac{3}{4} \left(\frac{3}{4} - 1\right) \left(\frac{3}{4} - 2\right) \left(\frac{3}{4} - 3\right)}{4!} \] Calculating each term: - \(\frac{3}{4} - 1 = -\frac{1}{4}\) - \(\frac{3}{4} - 2 = -\frac{5}{4}\) - \(\frac{3}{4} - 3 = -\frac{9}{4}\) Thus, \[ \binom{\frac{3}{4}}{4} = \frac{\frac{3}{4} \cdot -\frac{1}{4} \cdot -\frac{5}{4} \cdot -\frac{9}{4}}{4!} \] Calculating the numerator: \[ = \frac{3 \cdot (-1) \cdot 5 \cdot (-9)}{4^4} = \frac{135}{256} \] And \(4! = 24\), so: \[ \binom{\frac{3}{4}}{4} = \frac{135}{256 \cdot 24} = \frac{135}{6144} \] ### Step 4: Calculate \(\left(-\frac{2x}{3}\right)^4\) Now calculate \(\left(-\frac{2x}{3}\right)^4\): \[ \left(-\frac{2x}{3}\right)^4 = \frac{16x^4}{81} \] ### Step 5: Combine the results Now substitute back into the term: \[ T_5 = \frac{135}{6144} \cdot \frac{16x^4}{81} \] Calculating this gives: \[ T_5 = \frac{135 \cdot 16}{6144 \cdot 81} x^4 \] Calculating \(135 \cdot 16 = 2160\) and \(6144 \cdot 81 = 497664\): \[ T_5 = \frac{2160}{497664} x^4 \] ### Step 6: Simplify the fraction Now simplify \(\frac{2160}{497664}\): \[ T_5 = \frac{5}{1152} x^4 \] Thus, the fifth term of the expansion is: \[ T_5 = -\frac{5}{1152} x^4 \] ### Final Answer The fifth term of the expansion \((1 - \frac{2x}{3})^{\frac{3}{4}}\) is: \[ -\frac{5}{1152} x^4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For |x| lt 1/2 , the value of the fourth term of (1 - 2x)^(-3//4) is

Find the 7^("th")" term of "(1-(x^(2))/(3))^(-4)

Find the 10^("th")" term of "(1-(3x)/(4))^(4//5)

The general term in the expansion of ( 1- 2x)^(3//4) , is

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to

Find the specified term of the expression in each of the following binomials: (iv) Middle term of (x^(4) - (1)/( x^3) )^(11) .

Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

If the fifth term of the expansion (a^(2//3)+a^(-1))^n does not contain 'a' . Then n is equal to a. 2 b. 5 c. 10 d. none of these

The term independent of x in the expansion of (2x+1/(3x))^(6) is

Find the specified term of the expression in each of the following binomials: (i) Fifth term of (2 a + 3b)^(12) . Evaluate it when a = (1)/(3), b = (1)/(4) .